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Abstract

Second-order nonlinear models have been increasingly used in recent years to model 
the behavior of offshore structures. We apply such models to study the properties of 
random ocean waves. We also study the global responses of a spar floating platform 
by modeling the incident wave forces as a second-order phenomenon. To reduce the 
intense computational expense involved in a time-domain analysis of such models, we 
develop efficient methods and demonstrate it for estimating the fatigue damage in 
offshore structures. A fatigue reliability analysis accounting for uncertainties in the 
wave environment, in the resulting response and in the material properties is then 
demonstrated for a ship structure.

Traditional linear models of wave loads on offshore structures tend to be inaccurate 
in the response predictions. Second-order nonlinear models although computationally 
more expensive provide an opportunity to better predict these loads. These nonlinear 
models are based on a perturbation expansion of the linear form of the associated 
problem.

In modeling the random ocean waves as a second-order phenomenon, we devel
oped convenient analytic formulae to predict the nonlinearities as function of the 
wave climate and of the water depth at the site of interest. We compare the model 
predictions to measured waves in wave tanks and in oceans; and find the predictions 
to match the field data more than the wave tank data.

We model the tested spar floating platform as a linear rigid-body with 6  degrees 
of freedom. The incident wave loads axe modeled as a second-order phenomenon. 
Of interest is the global response of the spar, which here is the total horizontal 
displacement near the spar deck. Although the apparent transient response and the

iv
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few measured response cycles pose difficulties in calibrating the model, we find the 
model to offer reasonable predictions when compared to the measured results in wave 
tanks.

We then show an efficient method to estimate fatigue damage which is especially 
beneficial when the nonlinear analysis is computationally expensive. We demonstrate 
this method for a ship structure where a two-dimensional strip theory is used to find 
the nonlinear wave loads by integrating the water pressures to the exact instantaneous 
wetted surface. In this method, fatigue damage estimated from a carefully selected 
set of sinusoidal waves from stochastic theory seems to well approximate the damage 
estimate from a full time domain ship analysis in random waves.

Finally, we also show a fatigue reliability example for a ship structure where the 
probability of failure is found by integrating the uncertainties at all three levels: the 
wave climate, the structural response given the wave climate and the material prop
erties. Here an efficient method is shown to select the associated design parameters 
in order to achieve a preselected reliability level.
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Chapter 1

Introduction

In designing offshore structures, the engineer faces the difficulties of modeling the 

structural behavior and using the developed model to proportion the structure so 

that it functions safely. This is generally true for any structure on-land or offshore. 

The difficulties are due to the random nature of the environment (wave loads for 

offshore structures, earthquake ground motions in earthquake engineering, for exam

ple). Given the environment, the response (for example, deck or top-story horizontal 

displacement) of a  structure is not deterministic either. This adds to the complexity 

in estimating the reliability or safety of a structure during its service life.

Approaches to resolve these difficulties include performing model tests to under

stand the structural behavior in different climate conditions. This is generally very 

expensive and so an alternative is to formulate numerical (possibly theoretical) mod

els for the different parameters associated in the problem, i.e., the wave loads and 

the resulting response of the structure. If the model predictions compare well with 

experiments or observed data, they (the model) can then be used as a design tool 

to check the structure safety against different failure modes (e.g., fatigue failure, or

1
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CH APTER!. INTRODUCTION 2

ultimate load failure). The models for the waves and response given the waves may 

then be integrated to predict reliability estimates for a chosen design. Such integra

tion, for rare failure events, can be efficiently performed using first- or second-order 

reliability methods (e.g., [36]).

In this dissertation, we focus on wave loads and the behavior of offshore structures 

(here, a spar and a ship) to these. We will first use existing theoretical models for 

the wave surface and systematically compare model predictions to measured waves 

in oceans and to in wave tanks. This study is detailed in Chapter 2.

Incident wave loads and the resulting responses are demonstrated for a Spar float

ing platform and a ship. The details of the Spar study are presented in Chapter 3, 

while the ship study is presented in Chapter 4. The Spar platform is a new con

cept in the offshore industry and only one such platform has been built so far. This 

platform is a large vertical cylinder with a center well, held down to the sea floor 

by mooring lines. The cylinder provides buoyancy to keep the spar afloat and can 

also be used to store oil. We model the spar as a rigid 6 -DOF body and given the 

complex hydrodynamical loads, predict the spar response. Similar model forms have 

been applied before for other platform types, for example, the tension-leg platform 

(TLP) [59]. For the spar model, we calibrate the damping characteristics using wave 

tank tests conducted on this spar. Finally, we compare the model predictions to 

the wave tank measurements in order to check the accuracy of the model. Given a 

successful comparison, the model can then be used in designing the spar.

For ship structures, efforts are being made to better predict the ship response in 

waves by including increasingly complex hydrodynamical models in the analysis [5, 

31,44]. Such models are predicted to be more accurate than the more traditional 

linear response analyses of ships. The computational expense, however, seems to
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be very large compared to a linear analysis. In this study, we propose use of a 

“nonlinear transfer function” model, to predict the ship response across different 

climate conditions. In applying this model to a fatigue analysis, for example, the 

available ship analysis program is used to find the ship stresses (response) for a 

carefully selected set of waves from stochastic theory. These stresses in conjunction 

with the probabilities of “seeing” the waves, can be used to predict fatigue damage in 

the ship element. Similar models have been applied before for extreme ship-response 

analysis [69] and fatigue damage in side-shells of ships [15].

Finally, in Chapter 5, we present an integrated analysis of structural response to 

assess the design reliability in a  given service life. We demonstrate this application 

by studying the fatigue reliability of ship structural elements. Here uncertainty is 

considered in: (1 ) the wave climate, (2 ) the ship response given the wave climate, 

and (3) the material properties of the ship element. A FORM analysis is then used 

to find the reliability achieved given all the associated parameters.
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Chapter 2 

Nonlinear Random Ocean Waves: 

Prediction and Comparison w ith  

Data

2.1 Introduction

Nonlinear hydrodynamic effects are of growing interest for ocean structures and ves

sels. Here we study such effects in one of the most fundamental nonlinearities in 

ocean engineering: the wave elevation T)(t) at a fixed spatial location.

It is common practice to model T)(t) using linear wave theory, which results in a 

Gaussian model of rj(t). This ignores the marked asymmetry in the waves: wave crests 

that systematically exceed the neighboring troughs. Such an asymmetry increases 

with decreasing water depth. This asymmetry has several practical implications, for 

example: (1) asymmetric waves are more likely to strike decks on offshore platforms, 

particularly older Gulf-of-Mexico structures designed with fairly low decks; and (2)

4
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unusually large dynamic structural responses have been found in high, steep waves 

that may not follow linear wave theory.

Second-order random wave models are not new; indeed, they have been a research 

topic for more than 30 years (e.g., [3,17,20,21,29,33,51,54,55,70]) and remain so 

today (e.g., [19,39,63,71]). However, they have not entered common offshore en

gineering practice, which applies either random linear (Gaussian) waves, or regular 

waves that fail to preserve Sv(u)), the wave power spectrum. Several drawbacks to 

second-order random waves may be suggested: (1 ) they may be inaccurate, for exam

ple due to their neglect of higher-order effects; and (2 ) convenient statistical analysis 

methods for second-order models are often lacking. We seek to consider both con

cerns here — the first through comparison of theory with various wave tank and ocean 

wave measurements. The second issue is addressed by fitting new analytical results for 

wave moments, and studying the accuracy of using these to construct simple Hermite 

models of extreme crests.

2.2 Wave Model

Second-order Volterra models [50] have come under increasing use for modeling non

linear random processes in offshore engineering (e.g. [53,64,73]). r}{t) is accordingly 

modeled as the sum of a linear (Gaussian) process r]i(t) plus a second-order correction 

772 (<) from the nonlinear hydrodynamic problem associated with waves.

v{t) = Vi ( t)+ m (t)  (2 .1 )

Before presenting the details of the model, we show the low, mid, and high fre

quency components of a measured wave tank history in Fig. 2.1 to demonstrate the
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presence of potential second-order effects in waves. This history is from wave mea

surements taken during the Snorre Tension-Leg Platform (TLP) model tests [37]. 

The waves have been measured without the structure in the tank. More details of 

these wave tank histories are presented in Sec. 2.3. The significant wave height Ht is 

14.1m and the spectral peak period Tp is 13.75 seconds. For this example, we chose 

the mid-frequency component around the spectral peak of the measured history, from 

0.025 Hz to 0.14 Hz. The upper bound of 0.14 Hz is chosen to be a little smaller than 

twice the peak spectral frequency where we expect to see the most dominant second- 

order wave contribution. The range below 0.025 Hz represents the low-frequency 

component and the range above 0.14 Hz represents the high-frequency range, in this 

example. Fig. 2.1 shows that while the low and high frequency components have 

small energies (standard deviations) as compared to the mid-frequency component, 

the three components seem to be phase-locked, a phenomenon which would not be 

seen in a linear process. This observation supports the modeling of the waves as at 

least a second-order process.

For the second-order r j( t )  in Eqn. 2.1, the standard Fourier sum for the linear part 

V i ( t )  is
N  N

Vlit) =  £  A k cos( u kt  + 0k) =  Re 5 2  Ck exp( iu ik t )  (2.2)
it= i  t = i

in which Re indicates the real part of a complex number, and Ck =  Ak exp ( id k) are 

the complex Fourier amplitudes, defined in terms of Rayleigh distributed amplitudes 

Ak, and uniformly distributed phases 9k- The CVs are mutually independent of one 

another. The mean-square value of Ak is

E[Al] = 2S n M d u k ]  duk = uk -  uk- i  (2.3)
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Figure 2.1: Low, Mid, and High frequency components of measured wave history 
demonstrating presence of phase-locking and potential second-order effects

Based on Volterra theory [50], second-order corrections are induced at the sums 

and differences of all wave frequencies contained in 771(f):

Tfe(t) =  Re £  £  C„C„ (2-4)
m=l n=l

In general, the functions H+n and H~n are known as quadratic transfer functions 

(QTFs), evaluated at the frequency pair (uim,ojn). Similar expressions arise in de

scribing second-order diffraction loads of floating structures (see Chapter 3); in this 

case the QTFs are calculated numerically from nonlinear diffraction analysis (e.g.,
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[64]).

In predicting motions of floating structures, in view of the relevant natural periods, 

interest commonly lies with either H+n (springing) or H ~n (slow-drift) but not both. 

For example, in the case of the spar floating structure shown in the next chapter, 

the slow-drift forces and hence the difference-frequency components generally govern 

the global motions of the spar. In contrast, in the nonlinear wave problem both sum 

and difference frequency effects play a potentially significant role. Fortunately, unlike 

QTF values for wave loads on floating structures, which must be found numerically 

from diffraction analysis, closed-form expressions are available for both the sum- and 

difference-frequency QTFs for second-order waves (e.g., [29,39]). Including the effect 

of a finite water depth d, for example, the sum-frequency QTF can be written as

in which the wave numbers kn are related to the frequencies un by the linear dis

persion relation =  f̂cn tanh(fcnd). The corresponding difference-frequency transfer 

function, H~n, is found by replacing uin by —u>n and kn by —kn.

Because rj(t) is non-Gaussian, interest focuses on its skewness 0 :3  and kurtosis Q4 . 

In terms of the significant wave height Hs =  and peak spectral period these 

are predicted by a second-order wave model to be of the form:

q u mkl+wmk l
m

1 -  tanh(*rn + kn)d

(2.5)

= {m +  V2lZ =  ">31 (Tr)HZ + m 33(Tp)fff (2.6)

(ar4 -  3)0 * =  (771 +  Ifc)* = (2.7)
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The mij{Tp) are “response moment influence coefficients,” the contribution to re

sponse moment (cumulant) i due to terms of order O (t^ ). In general these coeffi

cients are conveniently calculated from Kac-Siegert analysis (Eqns. 12-15, [60,73]). 

We assume here the spectrum of rfi(t) is of the form HjTpf(uTp), so that rji(t) scales 

in amplitude with H, and in time with Tp. Such is the form, for example, of a 

JONSWAP spectrum.

It is useful to define the unitless wave steepness Sp =  Ha/L p, in which the charac

teristic wave length Lp =  gT%/2% uses the linear dispersion relation. Note that Sp is 

far less than unity and a second-order perturbation is performed by retaining terms 

only up to S^. For deep-water waves the coefficients rriij(Tp) are proportional to L~j , 

and they remain nearly so for finite depths as well. Retaining the leading terms in 

Sp from Eqns. 2.6-2.7:

0 3  — k3Sp ] 0 4  — 3 =  k4oi3 (2.8)

In particular, for a JONSWAP wave spectrum with peakedness factor 7 , we have fit 

the following k3 and £ 4  expressions to results for a wide range of depths [71]:

k , =  7 T =  5 .4 5 7 - 0 "0 8 4  +  {exp [7.41 (d /I ,)1-22] -  l} " ‘ (2.9)
Op

k4 =  =  I.4 I 7 - 0 0 2  (2 .1 0 )
a3

The second term in this result for a 3 reflects the effect of a finite water depth d: in 

shallower waters the skewness a3 grows, as the waves begin to “feel” the bottom. 

When comparing model predictions to data we will investigate the magnitudes of the 

omitted (second) terms in Eqns. 2.6, and 2.7.

Note also that while the skewness is predicted to vary linearly with steepness, the
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kurtosis is predicted from Eqn. 2 . 8  to vary quadratically with the steepness Sp. Since 

the steepness is far less than unity (squared steepness even smaller), this suggests 

that nonlinear effects will be most strongly displayed by the skewness, and hence by 

the wave crests rather than the total peak-to-trough wave heights. This second-order 

model may less accurately predict kurtosis, however, as higher-order omitted effects 

may be of the same order of magnitude.

In the following sections, we compare predictions from the second-order random 

wave model to both wave tank data and ocean wave measurements. The comparisons 

are at the following three levels:

• Section 2.3: M om ents of wave tim e histories, skewness a 3 and kurtosis 

o?4 or coefficient of excess 014 — 3. We will first compare the predicted moments 

across a broad range of seastates in both the wave tank and the measured ocean 

data.

• Section 2.4: C um ulative  D istribu tion  Functions (CDF) of wave ele

vations, wave crests and wave heights. These comparisons will demonstrate 

whether or not the second-order model is able to predict the CDFs, over and 

above predicting the third and fourth moments of the waves.

• Section 2.5: Local W ave Param eters. This study investigates the ability 

of the model to predict local properties of the wave profile; e.g., marginal mean 

and standard deviation of a wave crest given a wave height, of wave period given 

a wave height and similar marginal moments of other local wave properties.
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2.3 Comparison of 0 3  and a±: Data vs. Prediction 

Models

In this section, we shall compare the predicted and observed skewness and kurtosis 

from two different data sets; one from a wave tank and one from the ocean. The wave 

tank measurements reflect wave histories with target Ht of 4m to 18m in approxi

mately 308m water depth [37,38]. We consider 18 wave tank histories each about 2 

hours long with a sampling frequency of approximately 0.42 seconds. When estimat

ing moments from the wave tank histories we process hourly portions and as a result 

have moments from 36 hourly time histories. The ocean wave histories are laser mea

surements at Ekofisk in the Southern North Sea in approximately 70m water depth. 

These measurements are for durations of about 18 minutes (2048 samples at time 

steps of 0.5 seconds) collected every 3 hours during the year 1984. From the annual 

data set, we select seastates with Hs above 4.5m and with skewness values between 

-0.05 and 0.4 from the Ekofisk data set. The Hs and skewness cutoffs are introduced 

to seek to filter out any “noisy” measurements. This resulted in selection of 132 time 

histories (each of about 18 minutes duration).

Figure 2.2 shows comparisons of predicted skewness and kurtosis with the corre

sponding sample moments obtained from wave tank histories. Hourly segments of 

wave tank histories are processed to obtain estimates of skewness and kurtosis, and 

the predicted skewness and kurtosis are based on Eqns. 2.9 and 2.10. A linear regres

sion (with zero intercept) of observed skewness vs steepness yields an estimated slope 

of 4.97±0.12 (mean±std. error), close to the predicted slope k3 of 4.93 in Eqn. 2.9 for 

7  =  3.3. Note that the target 7  values for most of the wave tank tests were 3.3. The
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effect of the depth-dependent (d% 308m) term in Eqn. 2.9 will cause only a slight in

crease in the prediction and is neglected here. The seastate-to-seastate scatter aa3 in 

the observed skewness values is also consistent; the observed <ra, is found reasonably 

well-predicted by that from the simulated hourly segments of second-order seastates 

(using WAVEMAKER [23]). The simulation is based on a fitted JONSWAP spec

trum for each of the hourly measurements. The simulated skewness values show a 

aa3 =  0.023, which is smaller than the observed cra3 =  0.033 for the hourly segments 

of the measurements. The observed seastate-to-seastate kurtosis scatter aa< in the 

hourly measurements is 0.11. In Fig. 2.2b, the mean regression slope of 4.96±0.33 for 

observed k\ is about 4 times the predicted &4  regardless of 7 . This lends some support 

to the view that the second-order model predicts the kurtosis value less accurately 

due to omitted higher-order effects [63].

Figure 2.3 similarly compares predicted £*3 and a 4  values to Ekofisk data. For the 

predicted skewness and kurtosis values, we fit the JONSWAP spectrum parameters 

to each of observed time histories. Hs =  4 where is standard deviation of an 

observed history. Tp and 7  are found from the measured Tt and Ti, the mean zero- 

crossing period and the central period, respectively, as shown below. Tz and 7\ are 

found from measured spectral moments An = f  f nS ( f)d f  as

For a JONSWAP spectrum, we have fit these periods and 7  for a broad range of 

bandwidths 5,

A quadratic regression form resulted in the following expressions, for a JONSWAP

(2.11)

(2.12)
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Figure 2.2: Skewness and kurtosis comparison for Snorre model test wave measure
ments and the second-order model
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spectrum:

7  =  458J2 — 423<J 4 - 96 (2.13)

Tt /Tp =  -0.002372 +  0.03727 +  0.68 (2.14)

Ti/Tp =  -0.002472 +  0.03537 +  0.743 (2.15)

Using the fitted 7  (Eqn. 2.13), Hs, Tp (from Eqn. 2.14), we predict skewness and 

kurtosis using Eqns. 2.9 and 2.10.

For the Ekofisk data set, the slope of the observed trend on 0 3  is 4.24±0.14, 

while the above prediction scheme indicates a larger skewness trend of 4.92. Note 

the increase in observed scatter (<raz =  0.06) in skewness compared to the wave tank 

data. This is due to the noisy estimate of skewness from the 18-minute samples 

compared to the hourly samples in the wave tank case. The observed trend for 

kurtosis (fc4  =  1.03±0.61) is also quite accurately predicted by the second-order 

model (predicted k\ =  1.37), contrary to what we saw for the wave tank data. Again, 

the kurtosis scatter craA has increased to 0.24 when compared to the hourly estimates 

for the wave tank data.

The question is: why should the second-order model better match field data than 

the wave tank data when comparing kurtosis estimates? Recall that the wave tank 

data represents long-crested waves, while the field data probably represents short- 

crested sea conditions. The short-crestedness may likely cause a reduction in the 

nonlinearity in the waves at a point, due to the net effect of waves coming from 

different directions. In any case, it may seem that the second-order model generally 

underpredicts nonlinear effects, as seen in comparisons with the wave tank tests. The 

model prediction, on the other hand, seems better for Ekofisk data set; this may, 

however, be due to the effect of short-crestedness that leads to reduced nonlinear
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Figure 2.3: Skewness and kurtosis comparison for Ekofisk ocean wave measurements 
and the second-order model using fitted Hs, Tp and 7  values from measurements
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effects in the measurements.

Owing to the underpredicted kurtosis for wave tank data, it may be anticipated 

that the second-order model will most likely underpredict the “tails” (extremes) of 

the distributions for wave elevations, crest heights, and wave heights. On the other 

hand, for the Ekofisk data set where skewness and kurtosis are well predicted we may 

hope to find good agreement in predictions and measurements for the wave elevations, 

wave crests and wave heights. This is studied in detail in the next section.

2.4 Comparison of Distributions o f Wave Eleva

tion, Crest Height and Wave Height

In this section, we compare the observed distributions of the wave elevation, crest 

heights, and wave heights to second-order simulations (using WAVEMAKER [23]). 

Comparisons of data to analytical or empirical distributions are also presented. A 

summary of the measured wave data sets follows. Figure 2.4 gives a schematic picture 

of the definitions of the wave parameters. Crest height is defined as the elevation above 

mean water level to the highest point between two adjacent mean level upcrossings. 

Wave height is the elevation difference from the highest to the lowest point between 

two adjacent mean-upcrossings. The other wave parameters will be discussed in 

Section 2.5.

2.4.1 Summary of Measured Wave Data Sets

We will compare model predictions to measurements across multiple data sets in 

order to study the generality of any conclusions made. We focus here on four wave 

data sets: (1 ) three 2 -hour measurements representing the same seastate from the
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Figure 2.4: Definition for wave parameters used in the comparison studies

Snorre wave tank tests, (2 ) one 2 -hour measurement again from the Snorre wave tank 

tests, but now representing another seastate, (3) fourteen 18-minute Ekofisk wave 

measurements representing similar climate conditions. The first data set is chosen 

because it reflects 6  hours of wave measurement for a severe sea (see Table 2.3). The 

second data set represents a less severe sea with a different steepness Sp. Out of the 

year-long Ekofisk measurement, we select time histories that have close Hs and Tp 

values and, generally, reflect a large Sp value. We present a summary of the three 

data sets in Table 2.1.

Recall th a t the first two data sets are wave measurements in the wave tank taken 

in the absence of any structure. The waves in the wave tank are intended to be long- 

crested or unidirectional waves. The third data set is for ocean surface measurements 

taken by a down-looking radar. Since this a field measurement, we may not expect 

the waves to  be long-crested. The model predictions that follow use only long-crested 

waves, because no short-crested information is available. The observed wave statistics
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for these data sets are summarized in Table 2.2. Here, n  is the mean, a  is the standard 

deviation, and “Min.” and “Max.” are the minimum and maximum elevations in the 

wave histories for the total durations given in Table 2.1.

Of the three sets, the first data set shows the largest nonlinear effects: largest 

skewness, kurtosis and maximum/a values. The last column \ / 2 1 niV is an estimate 

of the most probable Gaussian maximum (or —minimum—) value (normalized by 

a) in N  cycles. We define the cycle count as N  =  T^m/T z (see Tables 2.1 and 2.3), 

where Tz is the mean zero-crossing period. In the first data set, note that the normal

ized maximum (max./<r) is about 2 2 % larger than the Gaussian extreme, while the 

normalized minimum value is about 13% smaller than the Gaussian minimum value. 

This is a manifestation of the nonlinearity (or skewness effect) that makes the crest 

(maximum) larger and troughs (minimum) smaller. Such nonlinear effects are also 

seen in the other two data sets, although to a lesser extent. The Ekofisk set, as noted 

earlier, shows the least nonlinear effects. The seastate steepness Sv also provides a 

measure of the nonlinearity to be anticipated in the histories, so we will next find the 

H, and Tp parameters in order to find Sp.

In order to use the analytic formulations of predicted or3  and 0 4  we fit JONSWAP 

spectrum parameters (the significant wave height Hs, spectral peak period and 

the peakedness factor 7 ) to the measured spectrum for each of the data sets. In fitting 

the JONSWAP spectrum to measurements we choose Hg =  4a and we tune Tp and 

7  so as to best fit the measured spectrum around the peak. The measured spectrum 

for each data set is found by averaging the spectrum across the different observations 

in each data set. For example, for the first data set, we average the spectrum of the 

three tests (504, 505 and 506) to find the final spectrum for this data set. For the 

second data set, we directly use the measured spectrum, while for the Ekofisk data,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2. NONLINEAR RANDOM OCEAN WAVES 19

we average across the 14 measured spectra to find the resulting spectrum used in 

fitting a JONSWAP spectrum.

Table 2.3 shows the target (nominal) and observed JONSWAP spectrum param

eters in the wave tank tests. The observed Hs value for Set 1 seems to be different 

from the nominal Ht values (by about 5%), while observed Tp and 7  for Set 1 and 2  

seem to agree with the nominal values. For the ocean wave measurements, of course, 

we do not have any nominal values. A summary of the calculated mean zero-crossing 

period Tz and the central period 7\ from the measured spectral moments (Eqn. 2.11) 

is also shown in Table 2.3.

Table 2.4 gives the seastate steepness (based on the fitted H, and Tp values) along 

with the predicted moments from Eqns. 2.9 and 2.10. We see excellent agreement in 

the skewness values for the wave tank data sets, however, as also pointed out earlier 

on average we underpredict the kurtosis values. Note also that that skewness is 

overpredicted by about 30% for the Ekofisk data set, when using the fitted skewness 

form in Eqn. 2.9. This leads to the question of whether accounting for the right 

spectral shape rather than using the fitted JONSWAP parameters would improve 

this prediction at all.

To understand the impact of spectral shape on the predicted 013 and 0 4  estimates, 

we use a smoothed spectrum for each data set and predict the moments using the lead

ing terms in Eqn. 2.6 and 2.7. The averaged spectrum that was used to fit equivalent 

JONSWAP spectra, contains thousands of frequency components and so a Kac-Seigert 

analysis that involves an eigenvalue analysis of the frequency components becomes 

prohibitive. We smooth the averaged spectrum across frequency components, so that 

the resultant spectrum contains only 256 frequencies. Although this smoothing might 

lead to some loss in the frequency resolution, we show that the predicted moments will
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largely be insensitive to this smoothing. The last two columns (labeled “Smoothed 

Spectrum”) in Table 2.4 are the predicted moments using only the leading terms. A 

difference in these moments and those from the fitted JONSWAP reflects the impact 

of spectral shape on the predictions. The kurtosis estimates seem virtually the same 

across all three sets. For skewness, Set 1  shows about 8 % reductions, while Set 3 

shows about 5% reduction when using the measured spectrum.

We investigate next the magnitude of the omitted terms shown in the above 

moment comparisons for the three data sets. We refer to the second-order prediction 

as “consistent” when considering only the leading terms in Eqn. 2 . 6  and 2.7. The 

predictions where we included all the terms in Eqn. 2.6 and 2.7, is what we refer to 

as “exact” second-order predictions. Such predictions will describe, for example, the 

ensemble moments of simulated wave histories from a second-order analysis. These 

histories will contain nonlinearities up to second-order reflected by both the terms in 

Eqns. 2 . 6  and 2.7. Table 2.5 compares the moments from a consistent to an exact 

second-order analysis for the three sets, using the smoothed spectrum in either case. 

Note that the exact <*3 prediction is smaller than the consistent second-order estimate. 

This is because the higher-order term in Eqn. 2.6 gives a negative contribution to 

skewness [39]. The exact analysis gives on average a 1 0 % reduction in skewness from 

a consistent second-order analysis. The kurtosis values appear to be almost the same 

in the two analyses, indicating insignificant contributions from the higher-order terms 

in Eqn. 2.7.

To compare the CDFs of the wave elevations, crest heights, and wave heights we 

simulate the first- and second-order wave time histories using WAVEMAKER [23]. 

The details of the resulting simulations are outlined in the following section.
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Table 2.1: Summary information of the four wave data sets used in CDF comparisons 
of wave elevations, wave crests, and wave heights

Set Description Water 
Depth (m)

Sampling 
Frequency (sec)

Duration 
7dur (hours)

1 Snorre wave tank 
data: Tests 504, 505 
and 506

308 0.424264 5.79

2 Snorre wave tank 
data: Test 304

308 0.424264 1.93

3 Ekofisk data set 
(Year 1984)

70 0.5 3.98

Table 2 .2 : Observed statistics of the three (zero-mean) measured wave data sets. Note 
that these statistics have been estimated from the total durations (see last column of 
Table 2 .1 ) of the data sets.

Set a  (m) a 3 <*4 Min. (m) Max. (m) Min . /a Max./cr V 2 1 nAT
1 3.358 0.230 3.263 -11.33 15.90 -3.374 4.735 3.881
2 1.762 0.154 3.141 -6.047 7.944 -3.432 4.509 3.633
3 1.285 0.113 3.012 -5.280 5.490 -4.109 4.272 3.883

Table 2.3: Spectral parameters for the four wave data sets

Nominal Spectrum Fitted JONSWAP Calculated
Set H A  m) Tr ( s) 7 H A  m) T,(s) 7 T A  s) Tx(s)
1 14.1 13.75 3.3 13.4 13.75 3.3 11.16 12.
2 7.0 12.0 3.3 7.048 12.0 3.3 9.45 10.05
3 * * * 5.14 9.8 3.3 7.62 8.21
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Table 2.4: Predicted moments from fitted JONSWAP spectral parameters and from 
measured spectrum that has been smoothed

Steepness Observed Fitted JONSWAP Smoothed Spectrum
Set S p <*3 0 4 O 3 0 4 0 3 0 4

1 0.0454 0.230 3.263 0.224 3.07 0.207 3.06
2 0.0314 0.154 3.141 0.155 3.03 0.153 3.03
3 0.0343 0.113 3.012 0.170 3.04 0.162 3.04

Table 2.5: Skewness and kurtosis predictions from a consistent second-order analysis 
vs. exact second-order analysis

Steepness Consistent 2nd Ord. Exact 2 nd Ord.
Set Sp o 3 o 4 0 3 o 4

1 0.0454 0.207 3.06 0.181 3.07
2 0.0314 0.153 3.03 0.141 3.04
3 0.0343 0.162 3.04 0.143 3.04
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Table 2.6: Number of simulations and durations (in hours) of each for the four data 
sets

Set
No. of 

Simulations
Duration of 
1  simulation

Total duration 
(hours)

1 2 0 1.93 38.6
2 1 0 1.93 19.3
3 50 0.28 14.2

2.4.2 Summary of Simulated Wave Data

The simulations of the first- and second-order histories for the four data sets are 

based on the measured spectrum of each. The time resolution and the duration of 

each simulated history are chosen to be the same as those for a single measured history. 

For example, for the first data set, each simulated history has a duration of 1.93 hours 

with a time resolution dt=0.424264 seconds; similarly, for Set 3 each simulated history 

contains 2048 points with dt=0.5 seconds. A summary of the number of simulations 

(Nsim) and total durations (Nsim x duration of 1  history) of the simulated histories 

is given in Table 2.6. The number of simulations is generally chosen so that the total 

simulated durations are longer than the total observed ones. The longer simulations 

are more likely to “fill in” the tails of the distributions and thereby offer a more robust 

comparison in the tails.

In order to compare predicted moments to observed results from similar durations, 

we combine the simulated histories to replicate the total durations in the observed 

results. For example, in Set 1  we combine (concatenate) 3 histories into 1  and as 

result have 6  simulated histories each of duration 5.79 hours. Similarly, for Set 3 

we combine 14 histories into 1 and as a result have 3 histories each of duration 3.98 

hours. For Set 2 , we do not need any concatenation since the observed history is itself
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1.93 hours long. Of particular interest here, is the scatter in the maximum elevation 

of simulated histories of different durations.

Table 2.7 summarizes the means and standard deviations of the simulated time 

histories. These means and standard deviations have been found for moments from 

the combined histories in each data set. For example, for Set 1  we estimate the 

moments for the 6  simulated histories each of duration 5.79 hours and then estimate 

the mean and standard deviations from these 6  values for each moment. Similarly, 

for Set 3 we find the mean and standard deviations of the moment from 3 simulated 

histories each of duration 3.98 hours. As Table 2.7 reports, the second-order cr’s are 

very close to the observed cr’s in Table 2.2 indicating that the second-order corrections 

contribute insignificantly to the standard deviation of the process.

As noted earlier, the simulated 0 :3  and (* 4  values agree with the predicted moments 

from an exact second-order analysis in Table 2.5. The largest difference in case of Set 2 

is about 9% and this is within the simulated scatter (0.1289dL0.0226). These simulated 

moments, when compared to the observed moments in Table 2.2, appear to be close. 

The largest discrepancy in 0 :3  and is seen in Set 1. We will investigate the impact 

of these differences between predicted and observed moments on the distributions of 

elevations, crests, and wave heights in the next section.

2.4.3 Comparison of Wave Elevation Distributions

We first study the comparisons of normalized wave elevation for data set 1, shown in 

Figure 2.5. The probability density function (PDF) of observed data is shown with 

± 1  a  bands on it. This scatter or sigma band of the probability density is estimated

as [47]:

scatter, a (2.16)
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Table 2.7: Means and standard deviations of moments of simulated second-order 
histories for the four data sets. The standard deviation of the moments reflects the 
predicted scatter in the durations specified.

Set Duration a  (m) <*3 on Min. (m) Max. (m)
1 5.79 Mean

Sigma
3.3830
0.0411

0.1815
0.0140

3.0393
0.0760

-12.7550
0.8195

15.0283
1.1667

2 1.93 Mean
Sigma

1.7612
0.0874

0.1289
0.0226

2.9855
0.1093

-6.0894
0.8442

7.1302
0.9656

3 3.98 Mean
Sigma

1.3060
0.0285

0.1397
0.0132

3.0923
0.1412

-4.9153
0.1843

6.4073
0.5593

where dr] is the bin-width used, N  is the total number of samples in the observation, 

and p is the estimated probability of being the bin. Note that 1 /dr] is included to 

reflect a probability density scatter. The PDF of the second-order simulation agrees 

with observed results at almost all probability levels. Note the slight underprediction 

of elevations around ±3<r levels. Such a comparison of the PDF plots offers indepen

dent comparisons across different elevation levels. The distinctly positively skewed 

nature of the observed PDF compared to standard Normal PDF <f>(u) in Fig 2.6 shows 

the non-Gaussianity of the observed elevations. This figure also compares analytical 

models for elevation distribution to data. Although, the Charlier series (see, e.g., 

[33]) using predicted moments (see Table 2.4) seems to agree here with the observed 

PDF over the range plotted, the demerits of this series approximation include (e.g., 

[70]): (1 ) for extreme elevations the PDF may become negative, and (2) it may show 

multimodal characteristics not inherent in observations. For example, in Fig. 2.6, the 

Charlier series shown on log scale could not be plotted below about — 3.5a,, because 

the Charlier PDF is negative below this elevation value.

The Hermite model [72] is a cubic transformation of standard Gaussian process 

based on the first four predicted moments. We present a simplified form of the Hermite
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model applicable over a wide probability range for waves. This simplification results 

because the predicted kurtosis levels for the waves do not significantly affect the 

transformations, as a  result we only need up to the quadratic term in the Hermite 

transform. At a  given fractile, the standard normal variable u can be transformed to 

a non-Gaussian wave elevation level x  in the simplified Hermite model as

x  =  g(u) =  Jj +  Ka„ Ju 4- ~ ( u 2  -  1)] ; k = 1 /y /\ +a§/18  (2.17)

in which fj is the mean wave elevation. We will compare the predictions of this 

simplified model to the full cubic-transformation result, which is given as:

a; =  0 (u) =  t? + /ca , [u +  c3 (u2  — 1 ) + c 4 (u3  -  2 u)j ; k =  l / y / l  + 2 c§ +  6 c^ (2.18)

Optimal values of C3  and c4 are found in order to minimize lack-of-fit errors in a 3  and 

ct4 [72]. Fig. 2.7 compares the Hermite predictions to data, where the three Hermite 

predictions include:

•  simplified model (Eqn. 2.17) with predicted moments (labeled “Sim.Herm. w/ 

Pred.Mom.”). Note that this prediction is labeled “Hermite” in Fig. 2.6.

•  cubic Hermite (Eqn. 2.18) with predicted moments (labeled “Cub.Herm. w/ 

Pred.Mom.”)

•  cubic Hermite (Eqn. 2.18) with observed moments (labeled “Cub.Herm. w/ 

Pred.Mom.”)

This figure reports virtually no difference in the simple and cubic Hermite predictions 

using the predicted moments. The cubic Hermite model using observed moments 

(from Table 2.2) improves the prediction, especially around —3.5a. Larger extremes
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have been shown in this figure, to emphasize the elevation difference likely to be 

seen when using observed or predicted moments in the Hermite predictions. The 

cubic Hermite model with observed moments appears to best match data; however, 

this model uses observed moments and requires that data be available to find the 

observed moments. A simplification would be to empirically relate these observed 

moments to the seastate parameters and use these in the cubic Hermite model. We 

propose that the simple Hermite model with predicted moments from second-order 

theory offers a convenient alternative to predict a broad range of wave elevations.

Before we look at comparisons of the crest heights (the peaks of the elevation 

process), we will look again at the wave elevations on a different scale — the CDF 

or rather the exceedance probability 1—CDF. As seen in Fig. 2.8a, the exceedance 

probability permits comparisons of the cumulative effects of the process. The second- 

order simulation appears to agree, within the observed scatter, with the observed 

CDF out to 2av. We note a slight underprediction of the observed wave elevation, for 

example, of about 0.15a,, at 0.001 exceedance probability. This slight underprediction 

may have been anticipated in view of the underprediction of the observed kurtosis 

by the model. A Gaussian model underpredicts the observed wave elevations (see 

Fig. 2.8b), for example, by about 20% at 0.0001 exceedance probability and the 

(simplified) Hermite model (Eqn. 2.17) improves the agreement and offers a similar 

comparison as the second-order simulated result. There appears to be a discrepancy 

of about 7% (well within the observed scatter shown by error-bars) at the same 0.0001 

fractile. As noted earlier, using the observed instead of the predicted moments in the 

cubic Hermite transformation improves the agreement even in the large extremes. 

Both the Hermite models: cubic and simple, however, seem to be within the error- 

bars of the observed CDF and are considered equally good predictors. Note that in
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the all the figures to follow, the predictions from the simplified Hermite model using 

the predicted skewness (from Eqn. 2.9) are labeled as “Hermite”.

For the second data set, we similarly find the second-order wave elevations to gen

erally agree with the observed results (see Fig. 2.9). The underprediction of observed 

elevations in the tails seems to be within the observed scatter in the elevations. The 

Gaussian model systematically underpredicts the elevations (a discrepancy of about 

2 0 % at 0.0001 fractile), while the Hermite model improves the agreement (i.e., the 

discrepancy is now within observed scatter).

Finally, for the third (Ekofisk) data set, the second-order simulation and the Her

mite model appear to yield excellent agreement with observed wave elevations (see 

Fig. 2.10). The Gaussian underprediction also seems to be less severe as compared 

to the previous two data sets. Recall that this a field measurement where short- 

crestedness may cause a  reduction in the nonlinear wave effects, so the second-order 

model, which underpredicts the long-crested waves, seems to better agree with the 

field data. Further investigations, however, have not been done to verify this hypoth

esis.

Based on the wave elevation comparisons, we may anticipate the second-order 

model to best predict the Ekofisk crests, and possibly to slightly underpredict the 

wave tank crests. We will investigate this in the next section.
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Figure 2.5: Normalized wave elevation PDF: Data vs. second-order simulations for 
Set 1  (Snorre wave tank data: Tests 504, 505, 505)
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Figure 2.6: Normalized wave elevation PDF: Data vs. analytical models for Set 1 
(Snorre wave tank data: Tests 504, 505, 505)
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Figure 2.7: Normalized wave elevation PDF: Data vs. Hermite models. Elevation 
from simple Hermite model using predicted moments and cubic Hermite models using 
predicted and observed moments are shown.
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(a) Data vs. Second-order simulation
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(b) Data vs. Analytical models

Figure 2.8: Normalized wave elevation CDF: Data vs. second-order simulations and 
analytical models for Set 1 (Snorre wave tank data: Tests 504, 505, 505)
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(b) Data vs. Analytical models

Figure 2.9: Normalized wave elevation CDF: Data vs. second-order simulations and 
analytical models for Set 2 (Snorre data set: Test 304)
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(b) Data vs. Analytical models

Figure 2.10: Normalized wave elevation CDF: Data vs. second-order simulations and 
analytical models for Set 3 (Ekofisk data set)
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2.4.4 Comparison of Crest Height Distributions

The crest height comparison shown in Fig 2 .1 1 a for Set 1 , shows that while the second- 

order model accurately predicts the small crests, it appears to underpredict the large 

observed crests. For example, at 0.001 fractile we find the model underpredicts crests 

by about 10%. The underprediction in crests heights seems more severe than the wave 

elevation prediction (see Fig. 2.8). An hypothesis is that the underprediction may 

be due to higher-order effects. This seems supported at least in the wave elevation 

case, where the agreement improves when including the observed moments in a cubic 

Hermite transformation.

Fig 2.11b, which compares the analytical models to data, shows that the Rayleigh 

crest model given as Prob[Crest >  c] =  exp(—0.5(c/a,,)2) from linear (Gaussian) wave 

theory, underpredicts the crests at almost all probability levels of interest (discrepancy 

of about 25% at the 0.001 fractile). The depth-dependent Haring et al [16] crest 

height distribution empirically fitted to observed ocean crest data, offers only a slight 

improvement (discrepancy of about 20% at the 0.001 fractile) over the Rayleigh model. 

The Haring distribution has been calibrated for a range of water depths less than 200 

meters. A similar form was also proposed by Jahns and Wheeler [22]; in this case 

the wave data comprised of shallow water storm wave records obtained in the Gulf of 

Mexico. The Haring et al exceedance distribution function is given as

Prob[Crest > c] =  exp[—0.5(c/a,)2]{l — 4.37(c/d)(0.57 — c/d)} (2.19)

Finally, the Hermite model (a transformation of the Rayleigh crests using Eqn. 2.17) 

offers a closer fit to observed crests than the Haring distribution. The discrepancy 

(underprediction) now is about 13% at the same 0.001 fractile level.
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Fig. 2.12 shows similar results as in Fig. 2.7 where we had investigated the impact 

of kurtosis on the predicted elevations. We first look at the impact of omitting the 

predicted kurtosis in the crest prediction. Using analytic predicted skewness and kur

tosis (see Table 2.4 for actual values) in the cubic Hermite instead of just skewness in 

the simple Hermite prediction hardly changes the predicted levels; “Cub.Herm. w/ 

Pred.Mom.” vs. “Sim.Herm. w / Pred.Mom” are virtually the same in Fig. 2.12. 

Using the observed moments (see Table 2.2) in the cubic Hermite improves the agree

ment with observed crests; however, we still see some underprediction in the crest 

levels around 2 to  3 a„. This indicates that even including the correct kurtosis in 

the cubic Hermite prediction model may not yield perfect crest predictions, implying 

that other contributing effects may not be predicted exactly. An hypothesis is that, 

while the Hermite model (using observed moments) predicts the elevations quite ac

curately, it may still not be modeling the slopes or the velocities of the wave surface 

and thereby is unable to correctly predict the crests heights. Another hypothesis is 

that these long-duration wave measurements may be nonstationary. A way of inves

tigating this (not done in this study) may be to divide the measurements into smaller 

segments and then compare model predictions with observed results from these small 

segments, where presumably the wave conditions could be assumed to be stationary.

The second data  set, again, shows (see Fig. 2.13) similar crest comparisons as in 

the first set. The second-order simulation offers good agreement for the small crests 

and underpredicts the large crests (discrepancy of about 1 2 % at 0.01 fractile). Of the 

analytical models, the Rayleigh distribution underpredicts the observed crests more 

severely (discrepancy of about 17% at 0.01 fractile). The Haring et al distribution 

offers only a slight improvement over the Rayleigh crests, while the Hermite model 

offers slightly better agreement to observed results (discrepancy of 7% at 0.01 fractile).
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As anticipated for the Ekofisk data set, the second-order model agrees well with the 

observed crests (see Fig. 2.14). While the Rayleigh model underpredicts the crests, 

now both the Hermite and the Haring et al. models seem to be agree with the 

observed crests at all probability levels.

In summary, given that the wave tank data and the field measurements are ac

curate, we may conclude that while skewness is well-predicted in both types of mea

surements, the wave tank kurtosis is large than that predicted from a second-order 

model and the field wave kurtosis can be well-predicted by the second-order model. 

On the other hand, a hypothesis could be that the wave tank data is in “error” due 

to its limited ability to generate intended waves. This may be due to scaling issues in 

the wave tank tests or due to nonstationarity effects in the long measurements. On 

could on the other hand argue that the field tests may be in error due to measurement 

noise from the water spray or a direct comparison of field data to the model predic

tions may be inconsistent due to the presence of short-crested effects in the field data 

which we are not able to include in the second-order model predictions for lack of 

information on the directional spread. Recall a third source of error in the field data 

may be the pooling of the 18-minute histories across different measurements during 

the year. Further studies along these lines may help explain the differences in the 

measured results and the model predictions.

We will next look at the model and observed wave heights; we expect any discrep

ancies to be less severe than seen for the crest comparisons. This expectation is due 

to the wave elevation being skewness rather than kurtosis-driven; because skewness 

effects both crests and troughs in compensating ways the wave heights tend, therefore, 

to show less nonlinear affects than the wave crests alone.
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Figure 2.11: Normalized crest height CDF: Data vs. second-order simulations and 
analytical models for Set 1 (Snorre wave tank data: Tests 504, 505, 505)
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Figure 2.12: Normalized wave crest CDF: Data vs. Hermite models. Elevation from 
simple Hermite model using predicted moments and cubic Hermite models using 
predicted and observed moments are shown.
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Figure 2.13: Normalized wave crest CDF: Data vs. second-order simulations and 
analytical models for Set 2 (Snorre data set: Test 304)
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Figure 2.14: Normalized wave crest CDF: Data vs. second-order simulations and 
analytical models for Set 3 (Ekofisk data set)
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2.4.5 Comparison of Wave Height Distributions

Figure 2.15 compares model and observed wave heights for the first data set. The 

second-order model offers a closer agreement (within observed scatter) to observed 

wave heights than the corresponding crest height comparison. For example, at the 

same 0 . 0 0 1  exceedance probability, the second-order model now underpredicts the 

observed wave height only by about 6 %. Recall the crest height underprediction 

at this fractile was 10%. Of the analytical models, the Rayleigh model, typically 

used for wave heights, is given as P rob [Height >  h] = exp[—(h/av)2/8], while the 

Forristall distribution [12], an empirical fit to observed ocean wave heights, is given 

as Prob[Height >  h] =  exp[— (/i/<t,,)2126/8.42]. The Rayleigh model seems to best fit 

the observed wave heights, while the Forristall distribution underpredicts the wave 

heights for this wave tank data. The simplified Hermite wave height prediction, which 

can now be a transformation of the Rayleigh crests and troughs to make heights, is not 

shown on the plot. The Hermite model finds the heights by transforming a Rayleigh 

crest and a Rayleigh trough at a desired fractile using Eqn. 2.17. The transformed 

crest and trough are added to result in the predicted height at this fractile. Note that 

in the simplified Hermite transformation the skewness shifts the crest and the trough 

in the same way so that the wave height remains identical to the Rayleigh height (= 

Rayleigh crest plus Rayleigh trough). A cubic Hermite transformation that includes 

the kurtosis effect increases the crest heights and the trough depths depending on the 

kurtosis magnitude. For kurtosis larger 3, this may only lead to larger wave heights 

than the Rayleigh distribution. Since the predicted kurtosis values are small, using 

these in the Hermite model may not significantly affect the wave height results. We 

choose, therefore, to not show the Hermite wave height model in the comparisons.

A comparison of the wave heights (Fig 2.16) for the second data set offers similar
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conclusions as the first data set. The second-order simulation offers good agreement 

for the small heights and slightly underpredicts the large heights. Of the analytical 

models, the Rayleigh distribution agrees well with observed wave heights. Finally, 

the second-order model and observed wave heights agree well for the Ekofisk data set 

(see Fig. 2.17). Now, however, the Rayleigh model slightly overpredicts the observed 

heights, and the Forristall distribution agrees well with the Ekofisk heights.
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Figure 2.15: Normalized wave height CDF: Data vs. Second-order simulations and 
analytical models for Set 1  (Snorre wave tank data: Tests 504, 505, 505)
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Figure 2.16: Normalized wave height CDF: Data vs. Second-order simulations and 
analytical models for Set 2 (Snorre data set: Test 304)
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Figure 2.17: Normalized wave height CDF: Data vs. Second-order simulations and 
analytical models for Set 3 (Ekofisk data set)
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2.5 Comparison of Local Wave Statistics

In this section we compare conditional distributions of local wave parameters. Fig

ure 2.18 defines the local wave parameters to be studied in this section. Crest front 

period Tc f  is the period from a mean-upcrossing to the time of occurrence of the 

highest point in a crest. Crest back period Tc b  is similarly defined as the period be

tween the highest point in a crest to the following mean-downcrossing. Crest period 

T c  is the sum of Tc f  and Tc b  and is the period between a mean-upcrossing and the 

following mean-downcrossing in the wave. The wave period T w , finally, is the period 

between the two mean-upcrossings in a wave.

We will compare the conditional distribution of the local wave parameters from 

the second-order model to data. We will demonstrate these comparisons with the 

first wave data set that represents the Snorre wave tank measurements. We will first 

look at the conditional distribution of a wave’s crest height given its wave height. 

Figure 2.19 shows the conditional mean and standard deviation of the wave crest 

given a wave height for the first- and second-order simulated histories and measured 

data. The Gaussian (first-order) simulation, of course, shows that the crest heights 

are on average half the corresponding wave heights. The data shows systematically 

larger crests conditionally, given the corresponding wave height. The second-order 

model is found to predict this conditional vertical asymmetry quite accurately. Note 

that even though the model slightly underpredicts the marginal distributions of the 

crests and of the wave heights, the conditional crest mean and standard deviation 

seem accurately predicted.

We next consider the horizontal asymmetry in the waves. Figures 2.20 and 2 . 2 1  

compare T c  to T w ,  and T c f  to T c ,  respectively. As may be expected, the first-order 

and second-order simulations do not indicate presence of any horizontal asymmetry.
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As seen in the figures, T c  is approximately half of Similarly, T c f  is approximately

half of Tc. No horizontal asymmetry can be found in the observed data either, 

indicating that the first- and second-order simulations are statistically equivalent to 

the observations as regards horizontal asymmetry.

Figure 2.22 shows the conditional distributions of wave periods given crest heights 

for data, first- and second-order simulations. This figure shows the conditional median 

along with 16- and 84-percentile spread of wave periods given crest heights. All results 

show the same trend of increasing wave periods for small to moderate crest heights, 

and constant wave periods for large crest heights. The asymptotic wave period is close 

to the central period obtained from the first moment of the wave spectrum (in this 

case the central period is about 12 seconds, Table 2.3). Figure 2.23 shows a similar 

comparison of conditional distribution of maximum of Tcf and Tcb in a wave vs. 

the crest height of the wave. This is again shown as the conditional median with 16- 

and 84-percentile scatter of Max.(Tcm Tcb) given crest heights. Such statistics are 

of interest, for example, in identifying the large high-frequency resonant (“ringing” ) 

responses that may be observed in offshore structures. Again, all results show the 

same trend of increasing periods for small crests and a gradual asymptote period for 

large crest heights, with the second-order model offering a slightly better agreement 

to data. The asymptotic maximum of the crest front and back period for large crest 

heights is about 25% of the central wave period.
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Figure 2.18: Definition for wave parameters used in the comparison studies
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Figure 2.22: Wave period Tw  to crest height: Data vs. first- and second-order models
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Figure 2.23: Maximum of crest front (Tc f ) and crest back {Tc b ) periods to crest 
height: Data vs. first- and second-order models (for application to “ringing”)
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2.6 Conclusions

•  The second-order wave model adequately reflects the nonlinearity of observed 

waves in finite water depths, and has the ability to include arbitrary frequency 

content in the waves. This model provides a better alternative to regular wave 

models or the linear Gaussian wave models.

•  Convenient analytic formulae for skewness and kurtosis from the second-order 

model are given by Eqn.s 2.9 and 2.10.

•  The second-order model (WAVEMAKER) provides a  convenient tool to simu

late various wave statistics of interest. Alternatively, the Hermite model coupled 

with analytically predicted moments (Eqn.s 2.9 and 2.10) could be used to yield 

various wave statistics.

•  Comparison of the model predictions to field data appeared to be better than 

the wave tank test comparisons. Some differences in the characteristics of the 

wave tank and field data were pointed.

2.7 Identification of First-order Waves

In ocean engineering practice it is common to assume the waves to be Gaussian 

when estimating forces on large volume structures and any nonlinearity in the waves 

is embedded in the structural response analysis (e.g., [64]). It has been shown in 

this chapter that observed time histories generally contain nonlinearities, it is thus 

imperative to remove any second-order effects in the incident waves so that these 

effects are not double-counted in the resulting response estimation. Recent studies 

([5 9 ]) have demonstrated the impact of double-counting such second-order effects on
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various structural response characteristics. We demonstrate this issue further in the 

next chapter on the spar floating platform.

The methodology to identify the underlying first-order waves is to seek the implied 

first-order wave history which, when run through the second-order wave predictor, 

yields an incident wave tha t agrees with the target observed history at each time 

point. This identification is performed using a Newton-Raphson scheme to achieve 

simultaneous convergence a t each complex Fourier component. If the observed history 

has N  components, we iteratively solve N  simultaneous nonlinear equations to identify 

the first-order components. Refer to Appendix A for more details.

As an example we will identify the underlying first-order wave component for the 

Snorre wave tank history (Test 504) that reflects a water depth of about 308m. Fig

ure 2.24 shows a portion where the maximum crest height occurs in the measured 

wave tank history. The figure also shows the identified first-order and the correspond

ing second-order wave histories. Note how the second-order wave component affects 

the first-order peaks, amplifying the crests and moderating the troughs. Figure 2.25 

shows the wave spectra for the measured history along with the first-order and the 

second-order spectra. Note that the second-order energy is significantly smaller (even 

at twice the peak spectral frequencies) than the first-order energy; it is the phase 

locking of the first- and the second- component (Fig. 2.24) leads to larger crests and 

flatter troughs.
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Chapter 3

Spar Floating Platform: Numerical 

Analysis and Comparison with  

Data

3.1 Introduction

In this study, we will investigate the global response behavior of a large-volume float

ing structure (here, a  spar platform) and compare model predictions to measurements 

in wave tank tests on this structure. Given good agreement to data, the model can 

then be used as a tool in designing various structural components of the spar.

Large-volume floating structures are being increasingly used for deep-water drilling 

and production of oil and natural gas. Examples of such structures include tension- 

leg platforms (TLP), semi-submersibles and spar floating platforms. For a TLP the 

deck is placed on a hull made up of three to five columns, with the columns extending 

into the water and connected to each other by pontoons. The floating hull is held

55
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down to the sea bottom by vertical mooring lines in tension. A semi-submersible is 

a similar structure, but it is held down by slack mooring lines. On the other hand, a 

spar floating platform is a large vertical cylinder, held down to the sea floor by slack 

or taut mooring lines. The cylinder provides buoyancy to keep the spar afloat and 

can also be used to store oil. The spar considered here has a center well that encloses 

the production risers. This provides for additional protection and easier maintenance 

of the production risers.

The mooring lines are typically designed so that the resonance periods of these 

large-volume structures are outside the dominant wave energy periods. For example, 

resonance periods in the horizontal direction of the spar can be of the order of 5 

minutes, far above the wave periods that may be around 5 to 15 seconds. In this 

study, we will analyze these long-period responses in the wave direction, often referred 

to as slow-drifb responses, for a spar platform and compare model predictions to wave 

tank measurements. Similar models have been applied before to TLPs [59] and will be 

extended here for the spar platform. The large slow-drift motions seem to be critical 

in various design aspects of the spar and the model can, generally, be extended to 

analyze other motions of the spar as well.

The spar platform is a  relatively new concept (compared to TLPs, for example) 

and the few studies done before [41,42,49,66] do not seem to systematically compare 

model predictions to wave tank data in random seas. In this study, we strive to apply 

different hydrodynamic models and systematically compare time domain predictions 

(using measured waves) to the measured response time histories in random seas. The 

response here refers to the horizontal displacement measured near the spar deck in 

irregular random waves.
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Figure 3.1: Elevation view of Spar platform

3.2 Spar Model for Slow-drift Response

3.2.1 Experimental Data

The floating structure chosen for this study, shown in Fig. 3.1, is a  catenary-moored 

spar buoy, intended for deep-water production and storage. The important properties 

required in modeling the spar are summarized in Table 3.1. A 1:55 model scale of 

the spar was tested in the OTRC wave tank [46] under various wave conditions. We 

will look here a t the random sea simulations of waves and resulting displacements in 

the horizontal along-wave direction. To investigate these motions, we will need to
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Table 3.1: Details of the spar configuration (in prototype scale)

D escription Notation Value
Diameter D 40.5 m
Draft from Mean Water Level (MWL) H 198.2 m
Mass with entrapped water m 2.59x10® kg
MWL to Center of Gravity Zcg 105.8 m
MWL to Center of Buoyancy Z cb 99.1 m
MWL to mooring connection Z f 105.6 m
Radius of gyration wrt MWL K r 1 2 2 . 8  m
Mooring stiffness in horizontal direction k 191 kN/m
Measurement gauge location above MWL Zm 54.8 m
Water Depth d 922 m

look at surge and heave displacements, pitch rotations and airgap measurements (see 

Fig. 3.2) i«i the wave tank. If the MWL is the origin, surge is defined to be horizontal 

displacement along the wave direction at the MWL. Pitch rotation is the rotation of 

the spar measured at the MWL in the plane of wave direction. Finally, heave is the 

vertical motion of the spar.

In the wave tank, the spar was tested for the following wave conditions:

• 1 2  different regular waves

• 14 different combinations of bi-chromatic waves

• 4 different random wave seastates

• various tests for combinations of random waves, currents and variable winds

The random wave measurements are for durations of one hour each with a sampling 

frequency of 0.37 seconds, and simulate the following storms:

• operational and installation seastates, both long-crested and short-crested
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Figure 3.2: Degrees of freedom for spar

• a 1 0 -year Gulf of Mexico storm

•  a 1 0 0 -year Gulf of Mexico storm

•  a North Sea storm

• a West Africa storm

Of these, we focus on the two most severe storms: (1 ) the 1 0 0 -year Gulf of Mexico, and 

(2) the North Sea storm. The experiments include two different hourly realizations 

of the same Gulf of Mexico storm and one hourly realization of the North Sea storm. 

The remaining smaller storms are not considered in this study. A summary of the 

wave tank measurements in the two storm is:

•  two realizations ( 1  hour each) of a seastate described by a JONS WAP spectrum 

with significant wave height Hs =  13.1m, Tp =  14s, and a peakedness factor 7  =
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2.0. These seastates are intended to represent roughly 100-year H , conditions 

in Gulf of Mexico sites and we will refer to these tests as GOM1 and GOM2

•  one realization (of 1 hour) reflecting a second seastate characterized by H , = 

14m, Tp =  16.3s, and 7  =  2.0. This seastate roughly represents 100-year H, 

conditions in the North Sea and we will refer to this test as NS.

In these experimental tests, the surge and heave responses are recorded by a video 

camera tracking a light source placed 54.8 meters above MWL along the cylinder 

vertical axis. The pitch rotations were recorded by an inclinometer mounted on the 

deck of the model. The airgap measurements were recorded by a probe attached to 

the spar deck facing the waves, while another probe measuring the wave surface was 

placed 125 meters (prototype scale) away from the spar, in a direction perpendicular 

to the propagating waves. This probe placed away from the spar is intended to 

measure the undisturbed waves, or what is typically referred to as the “reference” 

waves. The airgap probe measures the “disturbed” waves, which refers to the waves 

in the presence of a structure.

A summary of the reference wave statistics, as found from the measurements, is 

reported in Table 3.2. The observed Ht is defined to be four times the wave a,,, while 

the observed Tp has been found from an averaged spectrum from the measured wave 

histories. Tz =  \J \b f\v  is found from second (A2 ) and zeroth (A0) moments of wave 

spectrum S ( f )  with no smoothing, where An =  /  f nS{f)  df. Note the presence of 

nonlinearities in the waves (0 :3  >  0 and a 4  > 3), and the differences in the target 

(nominal) and observed Ht values.

In the response measurement we focus here on the surge displacement of the 

spar. These slow-drift responses in the surge direction are usually large and can 

govern the design of many structural elements, for example the mooring lines, of the
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Table 3.2: Reference wave summary statistics for the OTRC wave tank tests used for 
slow-drift response analysis of the spar

Test G O M 1 GOM 2 NS
Npts 9702 9702 9702
Nominal H,  (m) 13.1 13.1 14
Nominal Tp (m) 14 14 16.3
Observed H,  (m) 14.15 13.98 14.78
Observed Tp (sec) 14.1 14.1 16.1
Calculated Tx (sec) 10.83 10.74 1 2 . 0

Mean, fi (m) .063 .076 -.040
Sigma, <xn (m) 3.537 3.495 3.699
Skewness, <23 0.307 0.309 0.173
Kurtosis, an 3.057 3.242 3.277
Minimum (m) 
Maximum (m)

-9.054
12.74

-9.711
16.21

- 1 1 . 1 2

17.52

spar. The heave response for a spar platform is comparatively small and will not 

be investigated in this study. We anticipate no significant roll, sway or yaw motions 

to occur in unidirectional seas for this axi-symmetric structure and will not study 

these motions either. For the spar considered here, the horizontal displacement is 

measured at an elevation of 54.8 m above the MWL. Since this measurement point is 

away from the center of rotation, the horizontal displacement will be contributed by 

the surge displacement and the pitch rotation (about the center of rotation). Note 

that the center of rotation is close to the center of gravity of the spar. If we define the 

rigid-body degrees of freedom (DOF) at the MWL (see Fig. 3.2), then a unit radian 

pitch rotation will cause a 46 meter (=  54.8x sin(l)) displacement in the horizontal 

direction at the measurement point. We will refer to surge-induced displacement as 

“DOF1 displacement” , and the pitch-induced displacement at the measurement point 

as “D0F5 displacement”.
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Figure 3.3: Spectrum of measured surge displacements at 54.8m elevation above MWL 
for GO Ml seastate

To understand these surge- and pitch-induced displacements, we will look at one of 

the measured horizontal displacements. Figure 3.3 shows the power spectrum of the 

measured horizontal displacements for GOM1. This spectrum shows three prominent 

peaks which in sequence left to right are: the surge-induced, the pitch-induced and 

the wave-frequency components. Note how small the wave-frequency contribution 

(around f=0.07 seconds «  1/7},) is compared to the other to components. The surge 

and pitch components appear to contribute more to the total horizontal displacement.

The peaks in the spectrum indicate natural periods in surge (DOFl) and pitch

i 1-------1-------1------ r
Spectrum 

0.006 Hz Cutoff 
0.03 Hz Cutoff
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Table 3.3: Statistical moments of the measured horizontal displacements for the seast
ates. Note that the maximum and minimum values contain p.

Seastate H (m) a(m) <*3 on Min.(m) Max.(m)
GOM1

GOM2
NS

4.942
5.130
3.396

5.788
6.176
7.949

0.078
0.052
0.144

2.677
2.965
3.163

-12.32
-14.95
-21.87

22.76
25.99
29.35

(DOF5) to be about 330 and 70 seconds, respectively. Independent free decay tests 

of this spar also indicate the natural periods in surge and pitch to be about 330 and 

67 seconds [46]. To study the three components separately, we introduce frequency 

cutofis at 0.006 Hz and 0.03 Hz to filter the contributions from the three components. 

The frequency range below 0.006 Hz indicates the surge component, and the range 

above 0.03 Hz indicates the wave-frequency component. Finally, the pitch-component 

range is assumed to be between 0.006 Hz and 0.03 Hz.

Table 3.3 summarizes the statistical moments of the horizontal displacement his

tories, and the moments of its filtered components is presented in Table 3.4. A 

comparison of standard deviations a  of filtered components in the three measure

ments, confirms that compared to the wave-frequency component, the low-frequency 

or slow-drift components (DOFl and DOF5) dominate the total horizontal displace

ment. Thus a force model capturing only the wave-frequency components is likely 

to severely underpredict the horizontal displacements. Such a force model is usually 

referred to as a linear or a first-order model. For example, in Fig. 3.3 a linear force 

model would attempt to predict only the wave-frequency component, and it would 

fail to predict the DOFl and DOF5 components. Another force model that, instead, 

attempts to predict the force components away from the wave-frequency region is 

often referred to as a second-order model. In general, a second-order model includes
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Table 3.4: Statistical moments of the filtered components (with zero mean) of mea
sured horizontal displacements

Component a(m) <*3 <*4 Min.(m) Max.(m)
GOM1

Wave-frequency 
Surge component 
Pitch component 

Surge+Pitch Comp.

2.473
3.375
3.997
5.233

-0.023
0.091
-0.005
0.044

2.697
2.196
2.177
2.443

-7.882
-6.378
-9.733
-8.466

7.158
7.229
9.520
18.52

GOM2 
Wave-frequency 

Surge component 
Pitch component 

Surge+Pitch Comp.

2.508
3.937
4.040
5.643

-0.032
0.185

-0 .0 0 2

0.026

2.843
2.959
2.357
2.968

-7.933
-8.818
-9.516
-11.94

7.604
10.24
9.854
20.77

NS
Wave-frequency 

Surge component 
Pitch component 

Surge+Pitch Comp.

3.159
4.373
5.906
7.356

0.028
-0.113
-0.077
0.048

3.006
2.051
2.625
3.094

-10.36
-8.938
-18.57
-17.05

11.32
7.897
15.38
26.12

forces that are at the sums and differences of the wave frequencies. In modeling the 

high-frequency heave response of a TLP, for example, interest focuses on the sum- 

frequency component, while in this study where the slow-drift response is of interest, 

a difference-frequency model would be more appropriate. Recall that in modeling the 

wave elevations in Chapter 2, we needed both the sum- and difference-components.

We will next look at the component time histories in Fig. 3.4. The vertical axis 

label in each plot indicates the component being displayed. For the total horizontal 

displacement (shown in the topmost plot in Fig. 3.4), note the distinct transition 

in response characteristics around 1500 seconds. The displacement prior to 1500 

seconds seems to be due to dominant pitch motions, while after 1500 seconds the 

surge-induced (low) frequency response seems more dominant. This is also evident
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in the time history components shown, where the surge amplitudes are larger in 

the second half hour than in the first. Such a transition shows the difficulty in 

modeling a seemingly non-stationary behavior of the spar. The very limited number 

of surge response cycles seen in the hourly measurement additionally contribute to the 

difficulty in calibrating a model to this data. In this study, we investigate four such 

model forms that attempt to capture the nonlinear forces and the resulting responses 

of the spar. The model predictions will be compared to the wave tank measurements. 

Note that in these models, while the forces can be nonlinear, the structure is still 

assumed to respond linearly to the incident forces.

3.2.2 Structural Model

As mentioned earlier, the surge displacement, measured at an elevation of 54.8 m 

above the MWL, is contributed by the surge and pitch DOFs defined at the MWL. In 

order to capture this dual-contribution to the total horizontal displacement, we model 

the spar as a rigid cylinder with two DOFs (surge and pitch) defined at the MWL, 

see Fig. 3.2. To define the DOFs we choose the MWL as the origin because the first- 

and second-order waves forces have been defined with the MWL as the origin. Note 

that the spar is modeled as a rigid body, and the surge and pitch DOFs or modes 

refer to the rigid body motions of the spar close to the surge and pitch resonance 

frequencies.

From geometry considerations, we find that the structural mass matrix from
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Figure 3.4: Total measured horizontal displacement and its filtered surge, pitch and 
wave-frequency components for GOM1 seastate
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properties summarized in Table 3.1, for the 2 -DOF model is

M r t r  =
m u Ttx —m ZCG

•

. msi mss . -m Z c c  I(= m K ?)

2.59 x 108kg -2 .74  x 101 0kg.m

-2.74 x 10lokg.m 3.91 x 101 2 kg.m2

(3.1)

The added mass matrix reflecting the effects of waves radiated by the oscillating

spar, is assumed to be constant for the low-frequency modes, and is found from 

diffraction analysis [25] to be

Afadd —
2.71 x 108kg -2.60 x 10lokg.m

-2.60 x 1010kg.m 3.20 x 101 2kg.m2

(3.2)

Note that M»aa is of the same order of magnitude as for this large-diameter 

structure. The stiffness matrix, again from geometry considerations, is found to be

K  =
k —kZ f 

—kZ f kZ j +  kh
(3.3)

where k^ is the hydrostatic stiffness encountered by the spar when rotated in the 

pitch direction, and is given for small rotations as [42]

kh = *R 2Hpg(ZCG -  ZCB) -  $pgR*4 (3.4)

where p is the water density, g is the acceleration due to gravity and R  =  D /2  is the
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spar radius. On substituting these, we find

K  =
1.91 x 1 0 5 N/m —2.02 x 107N 

-2.02 x 107N 1.6 x 1 0 loN.m
(3.5)

An eigenvalue analysis of the 2 -DOF spar is solved for the shapes $  and squared 

frequencies A using

K $  =  Af<M (3.6)

in which M  =  and A is a diagonal matrix of the squared frequencies and

results in the natural surge and pitch periods of 331 seconds and 69.9, respectively. 

This is very close to the natural periods observed for the GOM1  seastate (see Fig. 3.3) 

and also close to the natural periods found from the free decay tests. This confirms 

the modeling of the mass and stiffness properties. The eigenmodes, scaled to unit 

values in the DOFS,
1 100.6 

6 . 8  x 1 0 “ 5  1

indicate the first mode of the cylinder to be surge dominated, while second mode 

shows a 1 0 0 . 6  meter horizontal displacement for every unit radian rotation in pitch. 

Note that this system shows strong “geometric-coupling” induced by the distance 

from measurement point to the center of rotation.

(3.7)

3.2.3 Hydrodynamic Model Forms

The base case model considered here for the spar is a linear, 2 -DOF (DOFl and 

DOF5) rigid cylinder with incident wave forces estimated from diffraction analysis 

of the structure [25]. The diffraction analysis for any structure is commonly done
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by applying sinusoidal waves of different frequencies u k chosen from the wave power 

spectrum. Irregular waves can be written as rj(t) =  Re £  Ck exp(iukt) where Ck

are complex Fourier amplitudes. The first-order forces fi( t)  are then found at these

incident wave frequencies as

Si (t) =  Re JT CkHi(uk) exp(iukt) (3.8)

where Hi is the first-order transfer function, while the second-order forces are found 

as the forces at pairs of wave frequencies as

h i t)  = R e £ ] T  CmCnH2 (u>m, <*>n) exp[i(cjm -  u n)t) (3.9)

where is referred to as the difference-frequency transfer function.

Note that in finding these transfer functions through second-order diffraction anal

ysis, the spar was allowed to float freely [25,26]. A linear diffraction analysis was used 

to estimate the frequency-dependent added mass and damping for the spar. Note that 

the second-order diffraction analysis is computationally intensive and limited to a few 

wave frequency pairs (here 8 x 8  frequency grid ranging from 0 . 2  to 1.18 rad/sec.). We 

adopt a surface spline fitting scheme FITQTF [24] to interpolate the sparse QTF to a 

fine mesh for use in predictions using TFPOP [58]. See Appendix B for some studies 

on the sensitivity of the predicted results to different interpolation schemes.

What remains to be modeled are the damping ratios, and f5, of the system in 

the two DOFs that can be used to construct the damping matrix C  of the system as

2£\U}\ 0

0  2̂ 50̂ 5
(3.10)
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where u/i and u$ are the resonance periods in surge and pitch DOFs.

The damping ratios f t  and ft for the 2-DOF system are calibrated using measured 

data. An approach for such a calibration could be to tune f t  and ft such that the 

predicted a  matches measured a  in each mode. This approach, however, may mask 

potential errors in the force levels. For example, if the force levels from diffraction 

analysis are overestimated, then the system will end up being tuned to an overly 

large £ values to compensate the large forces. Alternatively, we can tune £’s from the 

measured spectral bandwidth 6 [9] in each DOF. Other methods include half-power 

bandwidth, or random decrement method [62]. In this study, we will use the spectral 

moments A„ to estimate the bandwidths 8.

S =  -  A;/(AoA2) ; A„ =  f  r s ( f ) d f  (3.11)

where S( f )  is the measured spectrum. Note that ft the bandwidth of the surge com

ponent is found from S( f )  for /  < 0.006 Hz. Similarly, pitch component bandwidth 

£ 5  is from the spectral moments for 0.006Hz < /  <  0.03Hz. We resort to an itera

tive identification of the damping ratios, so that the predicted response bandwidth 

matches the measured bandwidth simultaneously in both DOFs.

We may additionally recognize wave-drift damping [11,59] as another damping 

mechanism in the system. This damping is due to the spar (slow) drifting in the waves. 

The resulting force is proportional to the spar velocity and to the wave amplitude- 

squared [11]. A consequence of this extra damping force is that it “clips” the peaks of 

the surge response, and as such is a “beneficial” nonlinearity that we will include in 

our second model. Wave-drift damping, similar to nonlinear force, is a second-order 

effect and is to be defined across pairs of wave frequencies (as in the QTF definition). 

In this study, the diagonal values for wave-drift damping definition were found using
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SWIM [40] and the off-diagonal terms estimated using Newmann’s approximation [45]. 

The effect of this approximation should be small for this slow-drift problem, as the 

interesting frequency pairs lie very close to the diagonal.

As will be demonstrated in the comparisons to follow, we see that both of these 

models appear to underestimate the value of the most basic indicator of nonlinearity: 

the net mean applied force and hence the observed mean horizontal displacement. 

This mean underprediction may be due to the absence of viscous forces in the models. 

An asymmetry in the viscous forces, due to the effect of integrating to the time- 

varying surface, causes a net mean offset of the structure in the wave direction. A 

third model is thus considered that additionally includes viscous force effects. The 

viscous forces are found as Morison’s drag force integrated from the spar bottom 

(keel) to the free surface. The drag force is based on absolute fluid velocity with an 

assumed coefficient of drag Co — 0 . 6  to reflect large viscous effects in a wave tank. 

A Wheeler stretching [67] of the water particle kinematics is used above the mean 

water level.

It may be argued that the disturbed waves, instead of the reference waves (as 

used in the third model) better represent the wave surface close to the cylinder and 

as a result will capture the viscous forces effects more appropriately. Recall that the 

disturbed waves have been measured in the wave tank by a wave probe attached to 

the deck of the spar. Inclusion of viscous forces from disturbed waves leads to the 

formulation of a fourth model. We will compare predictions from these four models 

in the following sections. Reference will be made to the models by names as given in 

Table 3.5.
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Table 3.5: Nomenclature for the four proposed model forms

Description Model
1 Base-case model with diffraction forces DF
2 Model with diffraction forces and wave- DF/W DD

3
drift damping
Model with diffraction forces, wave-drift 
damping and viscous forces from reference

DF/W DD/VF(u)

4
(undisturbed) waves
Model with diffraction forces, wave-drift 
damping and viscous forces from disturbed 
waves

DF/W DD/VF(d)

3.2.4 Input Wave Histories for Models

To consistently use the LTFs and QTFs from the diffraction analysis, which assumes 

the input waves to be Gaussian, we seek to infer consistent first-order wave compo

nents from the measured reference waves. We will apply these first-order waves to 

estimate the diffraction forces on the spar. We use WAVEMAKER [23] to identify 

the first-order components of the reference waves for each of the three seas: GOM1 , 

GOM2, and NS. The methodology to identify the underlying first-order waves is to 

seek the implied first-order wave history that, when run through the second-order 

wave predictor, yields an incident wave that agrees with the target observed history 

at each time point. This identification is performed using a Newton-Raphson scheme 

to achieve simultaneous convergence at each complex Fourier component. Details of 

this identification scheme can be found in Appendix A. Figure 3.5a shows a compar

ison of the reference wave spectrum for GOM1  seastate being studied here and the 

identified underlying first-order wave spectrum. Note that, as observed in Chapter 2 , 

the spectral density of the second-order component is significantly smaller (even at 

twice the peak spectral frequencies) than that of the first-order component, however,
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phase locking of the first- and the second-order component (see Fig. 3.5b) leads to 

larger crests, and flatter troughs.

In the DF/WDD/VF(u) model, while diffraction forces are still based on the 

underlying first-order waves, viscous forces are based on the observed reference waves. 

In the DF/WDD/VF(d) model, viscous forces are based on the disturbed waves as 

measured by the airgap probe attached to the spar. Note that the airgap probe, 

measuring the free surface elevation above the still water level, includes the heave 

(vertical) motions of the spar. We compensate the airgap measurements for these 

heave motions to get the time-varying free surface. This inferred wave time history 

is referred to as disturbed waves.

3.2.5 Calibrated Damping Values

As proposed, we iteratively identify the damping ratios fi and £ 5  in surge and pitch 

DOFs, so that the predicted spectral bandwidths in each frequency component si

multaneously match measured results. Since GOM1  and GOM2 are two realizations 

of the same seastate, we find common damping ratios across the seastates for each 

mode. We do this by tuning & and £ 5  so the bandwidths 8X and 8$ of the predicted 

spectrum that has been averaged across the two seastates, match simultaneously the 

bandwidths of the observed spectrum which also has been similarly averaged across 

the two seastates. Table 3.6 summarizes the calibrated £’s for the four models.

Note that if we sought to estimate damping ratios by matching the rms of the 

response we would expect the damping ratios from the DF/WDD models to be smaller 

than those of the DF models. We would similarly expect the damping ratios from 

the VF models to be larger than the WDD model. This is not guaranteed since 

we are matching the spectral shape (bandwidth); it is comforting, however, to still

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 3. SPAR FLOATING PLATFORM 74

TestGOMI

Observed 
Identified 1st Ord. 

2nd Order100

0.1
0.15 0.2 0.250.05 0.10

Frequency (Hz) 

(a) Wave Spectrum

Test GOM1
15

Observed 
Identified 1st Ord. 

2nd Order10

5

0

-5

-10
20001950 1960 1970 1980 19901940

Time (seconds)

(b) Wave History near maximum crest over one hour test

Figure 3.5: Reference (observed) wave vs. underlying first- and second-order waves
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Table 3.6: Calibrated damping ratios (%), £, for the models in surge (DOFl) and 
pitch (DOF5) components

Model
GOM1 & 2 NS

Surge Pitch Surge Pitch
DF 4.5 1 . 6 1.7 . 0 0 1

DF/WDD 3.3 0 . 6 . 0 0 1 . 0 0 1

DF/W DD/VF(u) 4.0 0.5 2.5 . 0 0 1

DF/W DD/VF(d) 6.5 . 0 0 1 0 . 1 . 0 0 1

see this comparison in the damping ratios. For the NS case, we find that even with 

( 5  «  0  we are still not able to match the observed bandwidth exactly and the observed 

bandwidth is still narrower than predicted. This may be due to limited pitch data in 

the 1 -hour measurements or there may be some effects that the model is not able to 

predict in the pitch motions. This may the cause for inability of the model to match 

the noisy bandwidth estimates.

3.2.6 Estimation of Initial Conditions

Finally, we observe the need to include measured initial conditions in our prediction 

results. Note that a  1 -hour measurement includes only about 10 («3600/331) re

sponse cycles in DOFl. Note also the time variation of the relative contributions of 

the surge and pitch components in the different parts of the time history in Fig. 3.4. 

In the experiments, the measurements were recorded after about 15 minutes (proto

type scale) when the wave tank conditions were deemed to have achieved steady-state 

conditions and hence the spar is not initially at rest. In order to include transient 

effects and to model these few cycles appropriately, we include measured initial con

ditions in the predictions. If, instead, the structure were assumed in the prediction 

to be start from at-rest conditions, these incorrect initial conditions would corrupt
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Table 3.7: Estimated initial conditions in surge and pitch DOFs for the three seastates

Sea Surge DOF Pitch DOF
Displ. (m) Vel. (m/s) Displ. (rad.) Vel. (rad/s)

GOM1 6.09 0.0135 0.188 0.00152
GOM2 4.46 -0.00951 -0.0362 -0.000694

NS -9.22 -0.0706 -0.254 -0.00171

the predictions, more so in DOFl response (where we see only a few cycles) than in 

DOF5 (where we see about 50«3600/69.9 cycles).

In order to estimate the initial conditions in the surge and pitch DOFs in each 

seastate, we need to use the measured horizontal displacements and the measured 

pitch rotations. The measured horizontal displacement is filtered to obtain the zero- 

mean surge and zero-mean pitch components. The mean offset is directly found from 

the measured history prior to imposing any filters. This mean contains the mean 

offset due to both surge and pitch components. A separate measurement of the pitch 

rotations is used to find the mean pitch rotation which then is converted to a mean 

offset due to pitch rotation. Given this pitch mean, we subtract it off from the total 

horizontal mean offset to get the mean offset due to surge. We add the mean surge 

and mean pitch offsets back into the filtered zero-mean surge and pitch histories. The 

initial displacement and velocity in surge DOF is then found from the first two time 

points of this mean-corrected surge history. Similarly, we find the initial displacement 

and velocity for the pitch DOF from the first two time points of the mean-corrected 

pitch history. Table 3.7 gives these estimated initial conditions at the MWL for the 

three seastates. Note how different they are from at rest initial conditions (zero 

displacements and zero velocities).

Note that the first-order response is estimated separately and does not depend on
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the second-order response calculation. So we, instead, efficiently predict the first-order 

response in the frequency domain. No initial conditions are forced on the first-order 

response calculation. Initial conditions will only affect the first few cycles, and will 

have little impact of the time histories that have hundreds of cycles.

3.3 Results

To investigate the model accuracy, we will compare predicted response moments of the 

three frequency components: wave-frequency, surge (DOFl) component, and pitch 

(DOF5) component. This will give an insight into model behavior at the component 

level. We then will look at the combined (total) surge response to see how well the 

pieces fit together to yield the combined predictions, i.e., the total predicted horizontal 

displacement.

3.3.1 Wave-frequency (first-order) Response

Figure 3.6 compares the statistics of the predicted to observed first-order response. 

These statistics include standard deviation 0 1 , the maximum response normalized by 

<?!, and the absolute maximum response. The first-order response, being primarily 

inertia dominated, is almost the same for all the four models. The viscous effects 

are accounted for in the second-order response estimation. Stiffness and damping 

terms contribute little to the first-order response because the natural periods are far 

away from the wave-frequency range (see Fig. 3.3). We see reasonable agreement of 

measured and predicted oi, suggesting that the mass properties, and the LTFs have 

been modeled adequately. The normalized maximum first-order displacements from 

predictions also agree with observations. Note the slight overprediction for the GOM
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seastates in 0 1  and the normalized maximum displacements. These overpredictions 

combine to cause an overprediction of the absolute maximum values for the GOM 

seastates, as seen in Fig. 3.6. The NS first-order prediction seems to agree with 

observations for all three statistics.

Figure 3.7 shows time histories of the first-order response and shows good agree

ment in the amplitudes and phases of measurements and predictions. Note the change 

in the y-axis captions, when viewing Fig. 3.7. Here the first 500 seconds have been 

shown for convenience; the rest shows similar comparison. An agreement in the time 

histories confirms the LTF formulation from diffraction analysis and also confirms 

the identification of the first-order input wave components from the measured undis

turbed waves. Since all the four models predict almost the same first-order response, 

only one predicted history is shown each of the seastates.
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Figure 3.6: Comparison of the first-order (wave-frequency) response statistics: Stan
dard deviation oi (top left), maximum normalized by the standard deviation (top 
right) and absolute maximum displacements (bottom)
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Figure 3.7: Comparison of predicted first-order response time histories to measure
ments across the three tests. Agreement is similar over all portions of the 1-hour 
tests, for clarity only the first 500 seconds of each test is shown here.
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3.3.2 Surge (DOF1) and Pitch (DOF5) Component Responses

Figure 3.8 compares the predicted statistical moments to the corresponding observed 

values. For each moment, the observed value for each seastate appears on the X-axis, 

and the predicted values are shown on the Y-axis. Note that we use three symbols 

on the X-axis to indicate the observed values in the three seastates. See Tables 3.3 

and 3.4 for numerical values of these moments. For each symbol on the X-axis, we 

have four model predictions each shown using a different symbol. Consequently, in 

one plot we should see four symbols aligned vertically, for every symbol on the X- 

axis, indicating four model predictions for every observed value. Each of the model 

predictions is shown using the same symbol across the three tests, in order to gauge 

the model predictions across tests. Perfect prediction is shown as a 45 degree dotted 

line on each plot.

As noted previously, we find here that the DF and DF/W DD models underesti

mate the total mean offset in surge (see Fig. 3.8). However, as also was anticipated, 

inclusion of viscous forces considerably improves the agreement in the predicted mean 

offsets. Use of disturbed waves in the VF(d) models yields, in all three tests, a slightly 

larger mean offset than the VF(u) model. Note that in the plot the observed mean 

offsets for each of the three seastates (see Table 3.3) have been marked on the X- 

axis (observed axis) by three different symbols. A difference in the observed values 

for GOMl and GOM2  indicates the level of observed scatter to be expected when 

comparing model predictions to measurements.

In Fig. 3.8, a comparison of odofi and odof5 > the standard deviations in the surge 

and pitch frequency components, shows that on average the DF model underpredicts 

the rms of the response. The largest DF underprediction in o d o f i , which in the case 

of the NS, is about 40% of the observed value. This is also the case for GOM2.
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ctqofs seems only slightly underpredicted by the DF model for GOMl and GOM2; 

however, odofs appears to be overpredicted by the DF model for the NS case. This 

may be due to the noisy estimate of the pitch damping ratio £5 . Recall that in the NS 

seastate, £ 5  is close to zero, but still the predicted spectral bandwidth was broader 

than observation.

In general, the underprediction in the standard deviations becomes slightly more 

severe on inclusion of wave-drift damping (DF/WDD model). Inclusion of viscous 

forces from either the disturbed or the reference waves leads to better agreement 

in the <r’s. fVom the plots, it may be argued that the VF(d) models gives better 

agreement in o ’s than the VF(u) model when compared across the three seastates. 

Note how close the VF(d) prediction is in all the three tests for both odofi and crDOFS, 

except for o d o fi in GOM2. This discrepancy for GOM2  still appears to be within 

the observed scatter in the rms response (difference in the rms value for GOMl and 

GOM2).

Instead of comparing the predicted skewness and kurtosis values, we will directly 

look at the maximum response in each frequency component. We will first look at 

maximum displacement normalized by the rms response for each component. Note 

that the filtered components have zero mean in all comparisons to follow. A nor

malized maximum comparison will give a sense of the tail prediction by the models 

independent of the rms comparisons. Finally, we will look at the absolute values of 

hourly maximum displacements. In Fig. 3.9, the top figures compare the normal

ized maximum values for the two frequency components. In both the components, 

all predictions, in general, show good agreement with observations for GOMl and 

GOM2. In the NS case, however, surge (normalized) maximum seems to be overpre

dicted by almost 35% for all models. We will investigate this issue when comparing
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the response time histories of the surge component. Results for the absolute maxi

mum displacements for each component can be anticipated from comparisons of the 

standard deviations and the normalized maximum displacements. For the maximum 

surge, we may anticipate that the maximum value comparisons will be similar to 

the rms comparison, since the normalized maximum value is well predicted in this 

case. The bottom-left plot in. Fig. 3.9 confirms this. As may also be anticipated, 

the maximum response comparison in the NS case shows a large scatter in across 

model predictions. The underpredicted rms seems to compensate the overpredicted 

normalized maximum displacement in the VF(u) model so that it is closest to the 

observed maximum response in the NS case, while other models either underpredicted 

or overpredict severely the observed NS maximum surge displacement.

The bottom-right plot in Fig. 3.9, shows similar results for pitch frequency com

ponent. Here, we find the VF(d) model to yield the closet agreement to observation. 

The other prediction models, also yield good agreement (largest discrepancy of 12%) 

for the GOM seas, while they underpredict the maximum pitch response in the NS 

case by about 30%.

Figure 3.10 compares the measured and predicted time histories filtered to include 

only the DOF1 frequency range. The filtered DOF1 results for all three tests (see 

the Y-axis caption) along with the corresponding predictions from the DF and the 

DF/WDD/VF(d) models. Note how few surge (DOF1 ) cycles are observed in the 

1 -hour duration, and consequently, as noted earlier, the potential difficulty in using 

these few cycles to tune the prediction models. Reasonably good agreement is seen 

between the measured and predicted time histories for all three tests, except in the 

case of the VF(d) model for NS. Note how close the predicted surge is in the GOMl 

case over almost the entire duration. For GOM2 the observed surge shows a general
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decay in amplitude until about 1500 seconds following which we see large surge cy

cles. This general trend seems to be shown by both the prediction models as well. 

For the NS, however, the DF model prediction seems to underpredict the surge re

sponse at almost all time points and the VF(d) model seems to give better agreement 

with observed results. In the last two cycles, however, the VF(d) model appears to 

overpredict the surge amplitudes. Note that the predicted surge from either models 

is in phase with the observed surge, more so in the VF(d) case than in the DF case.

A comparison of the pitch (DOF5) time histories from measurement, the DF 

model and the DF/WDD/VF(d) model is shown in Figs. 3.11, 3.12, and 3.13. We 

will first focus on the GOMl pitch histories in Fig. 3.11, where for convenience, 

the first half hour is shown on the top plot and the second half hour is shown in the 

bottom plot. A comparison of amplitudes and phases across the entire histories shows 

that the predicted pitch from both the models tends to generally follow the observed 

amplitudes, and occasionally disagrees in phase. For example, the DF model agrees 

with observed phase until about 1 0 0 0  seconds and gradually goes out of phase around 

1600 seconds and comes back in phase around 2000 seconds. The VF(d) prediction 

follows a similar in-out phase agreement, however, the disagreement seems less severe 

than the DF model. See, for example around 3000 seconds, while the DF model is 

completely out of phase, the VF(d) is still in phase with observation. Also, notice 

around 500 seconds, the VF(d) agrees with observed amplitudes much better than 

the DF model.

Similar, observations can also be made for the GOM2  and NS tests. It, generally, 

appears that the VF(d) predicted amplitudes and phases agree with observed results 

better than the DF model.

Recall that we incorporate measured initial conditions for each of surge and pitch
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components, when predicting response. The input initial conditions for each DOF 

at the mean water level result in a  net initial condition at the measurement point 

(54.8 m above the MWL). We show in Fig. 3.14, that indeed the prediction model 

preserves the net input initial conditions. Here we show the initial portions of the 

net horizontal displacement due to the surge and pitch components from observation 

and from prediction models: DF and DF/W DD/VF(d). Recall that the first-order 

or wave-frequency component is found from frequency domain analysis with no input 

initial conditions. Fig. 3.14 shows that we identically reproduce the net initial condi

tions in all the three tests and in the two prediction models. This is also true for the 

other two predictions not shown in this figure.
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Figure 3.8: Comparison of statistical moments for surge and pitch components in the 
three seastates: Predictions from the four models vs. measurements. The moments 
include total mean, and standard deviations in surge and pitch frequency components 
(see titles in the figure).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 3. SPAR FLOATING PLATFORM 87

Symbol Notation

DF
DF/WDD

DF/WDD/VF(u)
DF/WDD/VF(d

+
x
a
□

Observed GOM1 value o
Observed GOM2 value •

Observed NS value v

®
&
1
Q.

ICL

4

3T3
£
■o
£

1
4 1 2 3 4

Observed 

DOF1 Max. (m)
16

12

8

168 124

Observed 

DOF5 Max. (m)

I 12o
*
£  8

Observed
8 12 

Observed

“ 1— --------1-------- ” 1---------- 7
...-13

/  +

A

A

s

/  X

i i __
16

Figure 3.9: Comparison of statistical moments for surge and pitch components in the 
three seastates: Predictions from the four models vs. measurements. The moments 
include maximum normalized by the standard deviation and the absolute (unnormal
ized) maximum displacements in each of surge and pitch frequency components (see 
titles in the figure).
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Figure 3.10: Comparison of (zero-mean) response time histories in DOFl: prediction 
vs. measurement
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Figure 3.11: Zero-mean pitch (DOF5) time histories for GOMl: prediction vs. mea
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Figure 3.12: Zero-mean pitch (DOF5) time histories for GOM2: prediction vs. mea
surement
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3.3.3 Total Predicted Horizontal Displacement

Finally, we add all the predicted components together to get the total predicted hor

izontal displacement and compare to measurements. We add the three predicted 

components (wave-frequency, surge and pitch) time point by point to get a time 

history of the total horizontal displacement or what we may to as the total or com

bined response. Since the surge and pitch contributions to total surge response is 

significantly (as seen in Table 3.4) more than the first-order response, we may an

ticipate similar comparisons at the total response level as we did in each of surge 

and pitch component comparisons in Sec. 3.3.2. Note that the variance of the to

tal response of is simply the sum of the variance of each of the three components 

(=<j0 oF 1  +  O0 O F 5  +  of). Fig. 3.15 compares predicted and observed at , where the 

VF(d) model appears to give the closest prediction of all, with a slight disagree

ment (underprediction of about 12%) on the GOM2  case where it still seems within 

the observed scatter in GOMl and GOM2. The normalized maximum displacement 

(bottom-left figure in Fig. 3.15) shows a similar result as seen for the surge com

ponent case (in Fig. 3.9). This is because the other two contributing components 

(pitch, and wave-frequency) generally show good agreement in the normalized max

imum displacement comparisons (see Figs. 3.6 and 3.9). Finally, the bottom-right 

plot in Fig. 3.15 reports the maximum horizontal displacement of the total response. 

We find that the DF/WDD model predicts smaller maximum response levels than 

the DF model, and inclusion of viscous effects makes the agreement better.

A qualitative comparison of the predicted and measured combined time histories 

is shown in Figs. 3.16, 3.17, and 3.18 for the three seastates, respectively. We will first 

look at the GO Ml test in Fig. 3.16. As noted previously (in Fig. 3.4), the measured 

displacement shows a transition in the response around 1500 seconds (from visual
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inspection). The prediction models also show a similar transition: the DF and VF(u) 

models around 1800 seconds, and the VF(d) also around 1500 seconds. Also around 

500 seconds, the general nature of the prediction differs among the three models. Here 

again, the VF(d) model seems to better compare with the measurements. Similarly, 

for the GOM2 test in Fig. 3.17, the predicted amplitudes and phases generally follow 

the measured results in the top plot. The prediction models appear to have differ

ent frequency-component contribution around 2500 seconds, and of these the VF(d) 

model seems to be closest to measurements. Finally, for the NS case in Fig. 3.18, 

the prediction models predict similar displacements after about 2500 seconds. From 

about 1000 to 2500 seconds, we find absence of the low-cycle or surge frequency com

ponents when compared to the measured result. This was also seen in Fig. 3.10 where 

the predicted surge component is very small compared to the observed component. 

For the VF(u) model, it seems that in the same time range (100 to 2500 seconds) 

even the pitch component is underpredicted, and the total predicted displacement is 

predominantly first-order.

The prediction models, in general, seem to predict the GOMl and GOM2 test 

results better than in the NS case. Recall the difficulty in calibrating pitch damping 

ratios for the NS case (that turned out to be almost zero).
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3.4 Conclusion

In order to predict the global response of a  spar platform, we used different hydro- 

dynamic force models and applied it to a linear rigid-body model of the spar. Such 

models have been applied earlier to other large-volume floating structures. Exist

ing studies on the spar, however, do not appear to systematically compare model 

predictions in the case of random sea measurements.

Geometry considerations led to the development of the rigid-body structural model 

and the incident forces were modeled as second-order diffraction forces. We incremen

tally added other hydrodynamic effects, for example: the wave drift damping, and 

viscous forces on the spar (from disturbed or undisturbed waves) in order to better 

match model predictions to data. For the damping characteristics (over and above 

the added/diffraction damping and wave drift damping) of the spar, we calibrated 

the damping ratios in each of the two contributing modes (surge and pitch) so that 

the predicted spectral bandwidth matched observed results.

The limited number of response cycles (in surge) and the apparent “mode-swapping” 

in the measured horizontal displacements posed practical difficulties in calibrating the 

prediction models to the measured results. We applied measured initial conditions in 

an effort to better predict such transient characteristics.

The prediction models generally appear to give good agreement with the measured 

results. The comparisons were based on the moments (mean, standard deviation 

and maximum displacement) of the predicted and measured time histories, as well 

as on direct comparison of the time histories itself. Such comparisons were made 

for the total displacement histories and its filtered components (surge, pitch, and 

wave-frequency) across the three random sea measurements (reflecting severe storm 

conditions) in the wave tank.
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We surveyed four prediction models: (1 ) nonlinear diffraction forces only, (2 ) 

diffraction force plus wave drift damping effect, (3) model 2 plus additional viscous 

forces due to undisturbed waves, and (4) model 2 plus viscous forces from disturbed 

waves. The diffraction force model seemed to underpredict the observed mean offset, 

inclusion of viscous effects then better predicted the mean offset. The four models 

generally give good agreement with observed results and even appear to predict the 

apparent mode-swapping seen in the observations.
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Chapter 4 

Nonlinear Ship Loads: Stochastic 

M odels for Fatigue Analysis

4.1 Introduction

Fatigue cracking in ship details can lead to much expensive repair and should be 

considered in design of structural elements. A ship is typically designed to have a 

service life of about 2 0  years, during which it undergoes millions of load cycles that 

may result in fatigue cracks. In general, the fatigue hot spots can be at the ship 

bottom, the side shell, or in the main deck. A Swedish study conducted on 85 ships 

(see [43]) for damage due to cracks, deformations, and corrosion suggested that about 

70% of the damage was due to fatigue.

Existing recommendations (see [1,8]) for fatigue analysis and design (outlined in 

the following sections) either tend to be limited in accuracy of load analysis and hence 

fatigue damage, or are prohibitive in terms of computational resources. The study 

here suggests an approach that efficiently uses state-of-the-art nonlinear ship analysis

101
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tools to accurately predict fatigue damage without the heavy computational burden. 

This method also finds application in fatigue analysis of side shells [15] and in extreme 

ship-response analysis [69].

4.2 Ship Model

The fatigue reliability studies presented here are demonstrated for ships and in general 

should be applicable to any offshore structure that responds primarily in a quasi-static 

manner to the wave loads. We focus here on a monohull ship with flared cross-sections. 

A body plan and a  strip model of this ship are shown in Figure 4.1 and the main 

particulars of the ship are given in Table 4.1. The cross-section of the ship changes 

along the length of the ship with flared cross-sections at the ends of ship and box 

cross-sections towards mid-ship (see Fig. 4.1b). The ship-equipment mass and the 

ship dead-weight cause nonuniform mass distribution along the ship. A ship moving 

in the waves is subjected to many kinds of loads: vertical and horizontal bending 

moments, torsional moments, side shell intermittent water pressures, etc. In this 

study we consider only the mid-ship vertical bending moments (or equivalent mid

ship bending stresses) as loads on the ship (see Fig. 4.2). The sagging condition 

causes tensile stresses in the ship bottom, while the hogging condition may extend 

fatigue cracks in the ship deck. Lateral side shell or torsional loads are not considered 

in this study; however, the methodology developed here should be equally applicable 

for these loads as well.

The ship is assumed to be rigid and respond to the wave loads in heave and 

pitch degrees of freedom. We use a strip theory analysis program NV1418 [6,13] 

to perform a time domain estimation of the ship loads. This program is limited to
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Table 4.1: Main Particulars of Ship presented in Fig. 4.1

Specification_________________________ Value
Length between perpendiculars 166m
Beam 24.65m
Draught 8.85m
Weight 2 x10s kN
Waterplane Area 2.84xl03 sq.m

head seas loads. While no slamming or water on deck are considered, we integrate 

the water pressures to the exact wetted surface to find the rigid body forces on the 

ship and the resulting mid-ship bending moments. The pressure integration to the 

instantaneous wetted surface, and the flared hull cross-section, contribute primarily 

to the nonlinearity in the ship loads. The sag bending moments are typically larger 

than the hog bending moments, for example. A linear analysis, on the other hand, 

is based on the assumptions of small ship oscillations and, consequently, the bending 

moments do not show any nonlinearity (see Sec. 4.4.1).

4.3 Stochastic Fatigue Analysis

A general approach to fatigue analyses in reliability-based fatigue design, is to use 

available fatigue test data [52]. Typically, in fatigue tests a specimen undergoes 

constant amplitude S  cyclic loading and the number of cycles N  to “fail” is recorded. 

A linear fit to logS vs. logJV, called an S - N  curve, provides the following relation:

N  =  CS~b (4.1)
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Figure 4.1: Model of monohull ship that will be analyzed using strip theory
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Figure 4.2: Sag and Hog Bending Condition of Ship in Waves

where C  and b are the intercept and the slope of the fitted curve. This relation gives 

the mean number of stress loading cycles N  with amplitude S  that a fatigue specimen 

can tolerate before failing [14]. The material factor C, in general, shows a large scatter 

(coefficient of variation on the order of 50 to 60%). Typical values of the exponent b 

for steel material may be 3-6, and may be as high as 7-10 for composite materials. 

Values of S - N  parameters for offshore structure materials and their uncertainties can 

be found in various literature, including API [2] and SSC reports [43] among others.

For real structures, however, the loading is random in nature and we need to relate 

the random stress amplitudes to the number of cycles to fail. The Palmgren-Miner 

linear cumulative damage hypothesis [14] may be used to apply the S~N  relation to 

estimate the fatigue damage from a random stress history. Linearity of this hypothesis 

lies in the absence of any sequence effects of the random stresses. The hypothesis
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estimates the mean damage due to a single stress cydle with amplitude s to be l/N „  

where N, = Cs~b is the mean number of cycles to fail at stress amplitude s. Thus, 

according to this hypothesis, the mean damage D  in N cycles from a random stress 

history, whose stress amplitudes have probability density function /s(s), is

1 5 = r °  m ? * = £  r  s"M *) i s = <4-2>

where N  =  uT  is the number of stress cycles in a given duration T  due to a stress cycle 

rate v. The mean value of the fr-th power of S  can be found once its distribution fs(s) 

is known. Note that E[Sb]/C  is the mean damage per cycle, and vE[Sb]/C is then 

the mean damage rate (damage per unit time) which when multiplied by a duration 

T gives the mean damage ~D in T. For high-cycle rate applications, variations about 

the mean damage per cycle will average out quickly, so tha t the actual damage in 

time T  can be quite accurately approximated by the mean damage D  in time T. The 

following section outlines a few approaches typically used to identify fs(s).

4.3.1 Existing Approaches to Fatigue Analysis

This section briefly summarizes the existing approaches to model the distribution 

of the stress load cycles. According to existing guidelines for fatigue analysis (for 

example, [8 ]) we need to formulate the long-term stress distribution fs{s) for the 

structural component. Some ways to find it are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 4. NONLINEAR SHIP LOADS 107

1. Sim plified analysis in conjunction w ith  ship guidelines:

/s(s) can be modeled as a Weibull distribution:

P [S  >  s] =  exp [~(s//3)a] (4.3)

where a  and 0  are the shape and the scale parameters of the distribution. The 6 -th 

moment of a Weibull S  is given as

E[Sb] = 0 bT ( l + b / a )  (4.4)

where T(u) =  J^° tu -1e- tdf for u > 0 is the Gamma function.

Simple empirical rules (or more refined long-term analysis) may be used to find 

a. For example, Ref. [8 ] suggests or «  2 . 2 1  — 0.54 log10(£) for fatigue analysis of deck 

longitudinals, where L  is the ship length in meters. The second parameter 0  is then

found from an estimated stress value at a known fractile in the distribution. This

stress is found by performing a detailed analysis due to an assumed wave cycle that 

is likely to result in stresses at the desired fractile. Although this method permits 

a  quick and simple fatigue analysis scheme, drawbacks do exist. For example, 0  

is tuned to a single stress analysis and may be sensitive to the choice of the stress 

return period. This can, of course, be resolved by tuning 0  to different stresses and 

studying the consequence on fatigue damage estimates. Another problem that still 

exists, however, is how do we select a wave (or the wave parameters:, height H  and 

period T) that should result in stresses with a desired return period? If the response 

given a wave with height H  were deterministic, and if T  varied deterministically with 

H, then the return period of the wave would exactly be the return period of the 

resulting stress. In general, the response given a wave is random (also T  given H  is
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random) and hence the difficulty in identifying the wave.

2. Long-term  stresses based on long-term  clim ate conditions:

The long-term wave climate is divided into short-term climatic conditions called seast- 

ates. The duration of a seastate, typically 1 - 6  hours, reflects the time in which the 

waves can be assumed to be stationary. Parameters typically chosen to characterize a  

seastate are the significant wave height Hs, defined to be four times the wave elevation 

standard deviation a„, and the peak spectral period Tp. A ship response analysis in 

irregular waves (see Sec. 4.4) could then provide the stresses as a function of H, and 

Tp. This leads to the long-term stress distribution

f s i s) = J J  fs]H„Tp(s\hs, tp) fH.,Tp(h„ tp) dhs dtp (4.5)

where fs\H„Tp(.s\ht , tp) is the conditional probability density function of stresses given 

H ,  and Tp, and fir„Tp(ha,tp) characterizes the long-term joint probability density of 

the seastate parameters. Such joint distributions, characterized for many ship routes 

around the world, can be found in the literature, for example see Ref. [10]. Note the 

stress cycle rate v{h„ tp) may also be a function of the seastate parameters hs and tp. 

In this case, one needs to consider a weighted form of f 3(s) above; e.g.,

r f ) — / f  v {hg, tp)fs\H„Tv(s \hsi tj>)fH„Tp(hg, tp) dhs dtp .
IsK ) “  SI Hh,, tp) f H.,Tp(hg,tp) dh, dtp K '

Alternatively, with normalized damage (per cycle) given by S b, long-term mean 

damage must consider not just E[Sb\Hs,Tp] but more generally the mean damage 

u(Hs, Tp)E[Sb\Hs,Tp] per unit time (as in section 4.5).

An alternative approach (see, for example, API [2]), would be to use the local
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wave heights (wave height H  in a single wave) to characterize the wave climate and 

relate the stresses directly as a function of the wave height H. fs(s)  then based on a 

long-term distribution of the local wave heights /ff(ft) is

/»(») =  /  f s ia (s \h )M h) dh (4.7)

in which /s|jr(s|h) is the probability density of stresses S  given the local wave height 

H. This method does not explicitly assume dependence of stresses on the wave 

periods.

4.4 Ship Response Analysis Methods

This section discusses different methods to perform a ship response analysis to find 

the stresses given the climate conditions. These methods differ in the complexities 

of the hydrodynamical and mechanical models used to perform the analysis. For 

example, a linear analysis (see below) is based on small ship oscillations, while a  2 -D 

strip theory, studied here, accounts for the ship position in the wave and integrates 

the water pressure to the exact wave surface. This approach can be extended to 

perform a 3-D analysis accounting for fluid-structure interaction effects.

•  Linear Ship Load Analysis: A linear analysis is used to find the Linear 

Transfer Function (LTF) that relates waves to ship loads for a ship traveling at 

a  given speed. In this study, a strip theory is used to estimate the linear loads 

by integrating the water pressures to the mean water level [65]. In a short-term 

seastate (typically of 1  to 6  hours duration), the ship load is assumed to be 

Rayleigh distributed with the load standard deviation a  (and stress cycle rate) 

found from the spectrum of linear loads. A weighted Raleigh distribution across
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all seastates accounting for different ship speeds, and the long-term distribution 

of the seastates, may then in turn be used to directly find £[Sb], or to calibrate 

an equivalent Weibull model, which may then used to find 2?[Sb]. Although 

still a  linear analysis, this approach includes the frequency content in the load 

estimation and is computationally inexpensive.

•  N onlinear Ship Load Analysis: State-of-the-art 3-D nonlinear ship analysis 

tools like SWAN [27,44], Lamp [30,31], and USAERO [5], for example, can 

be used to estimate the global loads. In this study, we use a 2-D strip theory 

[6,13], as described in Sec. 4.2, to estimate the loads on a ship, and then find 

the resulting fatigue damage. Such tools perform increasingly complex nonlin

ear analyses to gain accuracy in the load estimates; the computational burden 

increases in intensity, however. We need to use these expensive tools minimally 

to predict fatigue damage with the least computational burden.

In the following section, we demonstrate the need to perform a nonlinear load 

analysis, instead of a linear one, to estimate fatigue damage, and then propose a new 

approach to perform such a nonlinear damage estimate.

4.4.1 Comparison of Ship Response from Linear and Nonlin

ear Analyses

We compare the ship loads (mid-ship bending moments) from linear and nonlinear 

analyses in an irregular sea to emphasize the effects of nonlinearities in the loads. 

The example sea chosen here is described by a JONSWAP spectrum with significant 

wave height H, =  5m, spectral peak period Tp = 10s, and peakedness factor 7  =  3.3. 

The ship is assumed to be traveling at a speed of 10 knots (=5.144 m/s) into a head
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Figure 4.3: Linear Transfer Function for Mid-ship Bending Moment Response

sea. The linear bending moments are estimated from a linear transfer function (see 

Fig. 4.3) relating the wave elevation process rj(t) to the mid-ship bending moments. 

Note that the linear transfer function peaks at about /  =  0.1Hz, or wavelength 

=  156 m (from linear dispersion relation). This is close to the ship length and so 

this chosen sea reflects a ship-length tuned sea. The nonlinear history is estimated 

from NV1418 using a 2 -D strip theory [6,13]. Partial mid-ship time histories of the 

Gaussian waves, the linear bending moments, and the nonlinear bending moments 

from an hourly analysis are shown in Figure 4.4.

The sag bending moments (positive peaks) are typically larger than the neighbor

ing hog bending moments (absolute value of negative peaks) in the nonlinear load 

history, while the bending moments are symmetrically distributed in the linear load 

history. Note that the range bending moment (=sag+hog) is also, on average, smaller
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Figure 4.4: Partial wave and response histories at mid-ship
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Table 4.2: Statistics of Ship Load History

113

Linear Analysis Nonlinear Analysis
Mean fi 
Sigma a  
Skewness 0 :3  

Kurtosis 0C4

0

1.06 x 1 0 s kN.m 
0

3.0

0.21 xlO* kN.m 
1.36 x10s kN.m 

0 . 6  

3.4

from the linear analysis. The history statistics of the two analyses are given in Ta

ble 4.2. The skewness of 0.6 in the nonlinear history provides a measure of the marked 

asymmetry between the sag and hog bending moments. Note also that standard de

viation of the linear history is approximately 30% smaller than that of the nonlinear 

analysis. This may be due to the limitation of the small oscillation assumption in 

linear theory, which thereby ignores the increasing nonlinearity as the length of the 

waves approach the ship length (see Fig. 4.3). Owing to the smaller sag bending mo

ments from linear theory and the resulting smaller ship keel (bottom) tensile stresses, 

the rate of crack growth will be considerably underpredicted by linear theory.

Fig. 4.5 compares the fatigue damage from the linear analysis to that from the 

nonlinear analysis. The linear fatigue damage DL in duration Tj is (see Eqn. 4.2):

D l =  TduzE[Sb\ (4.8)

in which i/q is the stress cycle rate and F[56] can be found from Eqn. 4.4, where 

for a Rayleigh stress (due to linear theory) distribution a  = 2 and 0 =  y/2a. Note 

that in Eqn. 4.8, we have ignored the S - N  coefficient C  and the section-modulus in 

converting bending moments to stresses. These are treated as material constants and 

will cancel out when looking at ratios of damage estimates.
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The fatigue damage Ds l  >s estimated from 20 hours of simulated nonlinear re

sponse in irregular waves in this seastate and is given as

D « = T il/„£[S‘] = X ;S ?  (4-9)
1= 1

in which N  is the total number of stress cycles, and Si, i =  1 . . .  N  are the sag, 

hog or range stresses seen in 20 hours. In this study, we will refer to DNl as the 

“exact” damage estimate and ask how close are the damage estimates from simpler 

prediction models. A comparison of linear to nonlinear fatigue damage shows that the 

sag-induced fatigue damage can be considerably underpredicted by the linear model. 

Linear hog damage is closer to the nonlinear hog damage, since the predicted hog 

bending moments from linear theory seem close to those from the nonlinear analysis 

(see Fig. 4.4). Recall that hog bending moments occur due to wave crests near mid

ship (see Fig. 4.2) where the cross-section is box-like, and so there, indeed, is potential 

for linear theory to correctly predict hog bending moments. As a net effect of sag and 

hog, the range fatigue damage is also underpredicted by the linear model, although, 

to a lesser extent than the sag underprediction.

As seen in Fig. 4.5, a nonlinear analysis of sag-induced fatigue for a flared ship can 

provide larger fatigue damage estimates than a linear analysis, particularly for large 

values of the fatigue exponent b. Such a nonlinear analysis is computationally inten

sive, however, and is thus an expensive solution to find accurate damage estimates. 

In this study, we look at an alternative method to estimate damage from nonlinear 

ship loads. This method is referred to here as a “Nonlinear Transfer Function” (NTF) 

model, as described in Section 4.5.
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Figure 4.5: Comparison of fatigue damage from linear and nonlinear analysis for sag, 
hog and range bending moments

4.5 Proposed NTF Approach

In this study, we propose an NTF model to estimate ship loads and the resulting 

fatigue damage. In this model, we apply the expensive nonlinear analysis to find 

stresses for only a limited, carefully selected set of wave amplitudes and frequencies. 

As the force analysis may be rather complex, a minimal set of amplitude and frequency 

values is chosen. The results are then appropriately weighted to reflect the amplitude- 

frequency distribution of actual random waves. The numerical set of stress values 

for the selected waves represents what we call the “Nonlinear Transfer Function” .
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The stresses from this limited set of waves, in combination with their associated 

probability weights, can be used to estimate the resulting fatigue damage estimate. 

This cheaply estimated fatigue damage is intended to approximate the relatively 

expensive, exhaustively simulated damage from a complete irregular nonlinear time 

domain analysis.

We will first confirm out theoretical distributions of the wave amplitudes and fre

quencies by comparing the results with simulated random waves. We then investigate 

the adequacy of such waves in successfully predicting the load statistics. This is done 

by comparing the regular wave results to a corresponding complete random wave 

analysis.

We test this model by comparing, in this example seastate (Ha =  5m, Tp =  lOsec), 

the predicted damage to the exact damage from Eqn. 4.9. Linear theory predicts this 

seastate to be about the most damaging seastate for an S - N  exponent 6  =  4 (chosen 

to reflect steel materials), as explained below.

In linear theory, the ship load (stress) process X  is assumed to be Gaussian and 

hence the sag (or hog) bending moments (or stresses S ) are Rayleigh distributed. The 

mean damage rate E[Dr\Ha, Tp] given Ha and Tp can then be written (from Eqn. 4.8) 

as

E[Dr\Ha,Tp] =  E[vSb\H.,Tp] =  v{Ha,Tp) (v/2<r(tf.,Tp)) 6 r ( l  +  6 / 2 ) (4.10)

where a(Hs,Tp) is the standard deviation and v(Ha,Tp) is the cycle rate of process 

X , both of which are seastate-dependent. The total long-term damage D lt is

Dl t  = TdJ J E[Dr\Ha, Tp] f H . ,T p ( h a ,  t p )  d h a d t p  (4.11)
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in which the integrand E[Dr\H,,Tp] tp) is the contribution to D L t  from

each seastate (sometimes called the damage density) and is shown in Fig. 4.6 for a 

joint distribution model of Ht , representing Northern North Sea data as suggested 

in [18]. The damage density is largest in approximately H, =  5m, Tp =  lOsec., and 

because large linear loads probably imply large nonlinear loads, as seen in Fig. 4.4, we 

choose this example seastate to study the accuracy of the NTF model. Note however 

the modeling errors may be greater in this seastate than in Dlt', we use this seastate 

to most severely test the NTF model and not to suggest typical errors to be expected 

in estimates of D l t , the long-term damage.

4.5.1 NTF Modeling Issues

As proposed, the idea of the NTF model is to find reliable estimates of fatigue damage 

from a limited set of wave runs rather than performing expensive nonlinear analyses 

across all the climate conditions. The key issues in the development of this model 

are:

•  Selection o f waves from  theory: The selection of wave parameters (here 

the wave height and the wave period) and their associated probabilities of oc

currence is based on stochastic theory. Each of the selected waves is stepped 

through the nonlinear time domain analysis to estimate the ship loads. The 

questions that arise here are: how accurately does this stochastic theory char

acterize the waves? And how many waves should we choose to robustly estimate 

fatigue damage? We will address the first issue in Section 4.5.2 in more detail. 

The second issue will be discussed by choosing different numbers of selected 

waves and then comparing the resulting fatigue damage estimates to simulated 

data.
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Figure 4.6: Damage density from a linear analysis vs. long-term seastate parameters.
The damage rate shown has been normalized by the largest value.

• Inclusion of spatia l wave effects: In order to include the spatial wave effects, 

stepping the ship through just one wave cycle may not suffice in estimating the 

ship loads. This is because at any given time instant the loads depend on the 

spatial waves across the ship, and on the position of the ship in these waves. 

We may need to include such spatial effects in the limited wave runs. We hope 

to achieve this by constructing “most-likely” side wave cycles around each of 

the selected waves, and then stepping the ship through this triplet to find the 

resulting ship loads. We address this issue further in Section 4.5.3.
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4.5.2 Selection of Waves from Stochastic Theory

A sinusoidal wave can be defined by two parameters, a  wave height H  and a wave 

period T.  We verify theoretical distributions of H  and T  with simulated random 

waves. For waves in an irregular time histories (see, for example, Fig. 4.4a), we select 

H's and T ’s from all the wave cycles; a wave cycle is defined as the wave surface 

between two successive mean-upcrossings of the wave surface. H  is the elevation 

difference between the highest and the lowest points in a wave cycle and T  is the time 

duration between the mean-upcrossings of a wave cycle. Note that this definition of 

wave cycle, and corresponding H  and T, is introduced here simply to permit critical 

comparison of separate parts of the NTF model prediction -  e.g., f (H,  T)  and D\H, T. 

These precise definitions do not effect the actual calculation of the nonlinear damage 

Df f i ,  nor of its estimate D n t f  from the NTF model.

Wave H eights from  Theory

The wave heights of the selected waves are sampled from the Forristall [1 2 ] distribution 

which is an empirical distribution fitted to observed ocean wave heights. For the 

Gaussian seastate we are considering (represented by a JONSWAP spectrum with 

Ht =  5 m, Tp =  1 0  sec., and 7  =  3.3), Figure 4.7 shows a comparison of 20 hours of 

simulated wave heights to the Forristall distribution and the Rayleigh distribution of 

wave heights. The cumulative distribution function (CDF) of the wave heights H  is 

given as

F„{h) = P[H <h] = l -  exp ( y g i ) “ (4.12)
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where on is the standard deviation of the wave elevation process and a  — 2 , 

0  — 8  for the Rayleigh distribution and a  =  2.126, 0  =  8.42 for the Forristall dis

tribution (from empirical fits). Note that the Rayleigh distribution is a  theoretical 

distribution for a narrowband Gaussian and to the degree q(t) is not narrow

band, the Rayleigh distribution will tend to overestimate wave height fractiles with 

respect to simulated Gaussian behavior. In Fig. 4.7, the Rayleigh distribution indeed 

overpredicts wave heights, while the Forristall distribution offers a closer fit to the 

simulated wave heights. Similar comparisons of the Forristall model with simulated 

second-order waves were also found in the wave studies conducted in Chapter 2. We 

will choose the Forristall model to generate the wave heights for the NTF model.

T heoretical Wave Periods given W ave H eights

Given the wave height H, we predict statistics of the wave period T  for the sinusoid 

from the Longuet-Higgins conditional distribution [34-36,69] of wave periods given 

wave heights. This distribution, based on envelopes of narrowband processes, spec

ifies a truncated normal distribution of wave frequencies Q =  2%/T given the wave 

amplitude a =  H f 2 as

$() is the standard normal CDF. 57 =  Ax/Ao is a mean wave frequency in terms of

is a unitless spectral bandwidth measure. For example, A =  0.42 for a Pierson- 

Moskowitz spectrum, and decreases from this value for a JONSWAP spectrum with 

7  >  1 . Similar models for the conditional distribution have been proposed by Canavie

where P[fi >  o'(a] is the probability that D exceeds a specified u> value given a and

the wave spectral moments A, =  f  o j* S v ( u > )  cLuj. a n  =  y / X o ,  and A =  y  AoA2 /A? — 1
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Figure 4.7: Comparison of simulated wave heights to Forristall and to Rayleigh dis
tributions

et al. [7] and Lindgren and Rychlik [32]; however, these require at least the fourth 

spectral moment, which is not generally available for wave spectra and so we propose 

not to use these models for the fatigue analysis studies. In this study, we take T  =  

0.92Tp (e.g., [39]) and so will refer to it as a “modified” Longuet-Higgins distribution. 

For the example seastate, we find Tc =  2ir/& =  8.35 sec, while T  =  0.92TJ, =  9.2 sec.

To select wave periods in the NTF model, we can relate the frequency fractile up 

for a given a in the Longuet-Higgins model to the requested probability p. This is
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Figure 4.8: Simulated wave period vs. modified Longuet-Higgins wave period
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done by setting Eqn. 4.13 equal to 1 -  p

S t  =  ,  i  _
W T„ a

( 1  -  p)$ t e ) (4.14)

We compare 20 hours of simulated wave period in this example seastate to the 

wave periods from this modified Longuet-Higgins model. Figure 4.8 shows a com

parison of the 16-, 50- (median), and 84- percentile values of wave periods from 

simulation to those predicted from Eqn. 4.14. For wave heights greater than 3 meters 

the modified Longuet-Higgins model offers a  reasonable approximation to simulated
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wave periods at the median values and also at the 16 and 84 percentile values of 

the conditional distribution. For small wave heights, the theoretical wave periods are 

larger than the simulated periods; however, there is negligible contribution to fatigue 

damage from these small-height waves, and so, from a fatigue damage standpoint, 

the modified Longuet-Higgins model appears to offer a satisfactory approximation to 

the conditional distribution of wave periods given a wave height.

Finally, given a count of the waves to be selected, the choice of wave heights and 

wave periods given wave heights could, for example, be based on quadrature points. 

Say, 30 waves are to be selected, as will be used in this study later on. We may mesh 

the H-T space, so that we have 10 different H values and 3 different T values per H 

value adding up to 30 waves. We could first select 1 0  standard normal variables u 

at Gauss quadrature points and then transform these to H values according to the 

fractile p of u

H  = 0 [ - lo g ( l -p ) ] 1' a (4.15)

Given an H value, we can use Eqn. 4.14 to similarly obtain three T  values at 16, 50 

and 84 fractiles, for example. The joint occurrence probabilities of the H -T  pairs can 

then be easily found from weights associated with H  quadrature points (=P [U =  u,]) 

and from the conditional fractiles of T\H.

4.5.3 Selection of Side Wave Parameters

Since a Gaussian sea has no horizontal asymmetry (reversing a Gaussian history does 

not change the history statistics), we assume the wave periods and the wave heights 

of the side waves to be the same. This results in a symmetric wave triplet. Let 

Hq and To denote the wave height and wave period of the side waves, respectively, 

and H  and T  denote the height and period of the middle wave, respectively (see
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Figure 4.9: Relation of side wave height to middle wave height

Fig. 4.10). For the 20 hours of simulated Gaussian waves, we empirically relate 

E[H0\H] =  0.46(#/2)15 +  2 as shown in Fig. 4.9. This figure shows the mean, and 

mean± 1 standard deviation of Hq given various H  values in the wave history. Note 

however that this empirical result is seastate-specific. Parametric study across a grid

of H ,  Tp seastates could afford more general results. Alternatively, one may seek

analytical results through probability theory. For example, linear regression suggests 

that

E[Hq\H] =  m g  +  Ph,h0(H — rrig) (4.16)
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Figure 4.10: Construction of Wave Triplet for NTF Load Prediction

Values of the mean wave height, m # , and the correlation Ph,h0 between successive 

heights, can be estimated by random vibration theory.

For the Gaussian wave history, we find that T0 has negligible correlation with T  in 

this seastate, so we let To given Ho be the median period from the modified Longuet- 

Higgins model, without conditioning the choice of To on T. Finally, we construct a 

wave triplet with three sinusoids in succession (see Fig. 4.10), where Hq, To are the 

side wave parameters and H, T  are the middle wave parameters.

4.6 Predicted NTF Fatigue Damage vs. Data

In this section, we will predict fatigue damage from the NTF model and compare it 

to exact damage found from 20 hours of simulated stresses. Recall that the simulated 

stresses are obtained from the nonlinear ship response analysis of 20 hours of Gaussian 

waves. This analysis is done in a seastate with Hs =  5m and Tp =  lOsec. For the 

NTF model, we will start out by predicting damage from 30 single sinusoidal waves, 

and investigate the necessity of imposing side waves on each of these 30 waves. We
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will then study the accuracy of predicted damage from a reduced set of waves, for 

example, 15 waves instead of 30 waves.

For the NTF prediction, we select 30 waves (see Fig. 4.11) as the wave set to 

estimate the mid-ship bending moments. 1 0  equi-spaced wave heights are chosen for 

waves, with the maximum H value arbitrarily assumed at 10~ 6  exceedance probability 

(H with return period of approximately 1  in 1000 hours) according to the Forristall 

distribution [12]. This return period for H  has been arbitrarily chosen to include 

large rare wave heights as well. We find the weights associated with these 10 H  

values from the Forristall distribution. Given the H values, the middle wave periods 

T  are chosen to be at 16, 50 (median) and 84 percentile values according to the 

modified Longuet-Higgins distribution and are found from Eqn. 4.14 using p=0.16, 

0.5 and 0.84, respectively. In general, we could increase the number of waves in the 

set to gain greater accuracy in the predicted results; however, as demonstrated in the 

following sections these 30 waves seem to represent the simulated bending moment 

statistics adequately. For each wave height, the three selected wave periods were 

chosen to have equal probability weights of 1/3 each. Finally, the marginal weights 

of H  can be multiplied with the conditional weights of T\H  to find the joint weights 

Pj of the 30 H  and T  pairs.

Let Np =  30 denote the number of waves used to mesh the H-T space. Thus, 

the H-T space can be divided into Np cells centered around each of the selected H-T 

pairs. Let Pj (j =  1 .. .Np) denote the probability of “falling” in the j th  cell. The Pj 

values can also be understood as the joint weights associated with the Np H-T pairs. 

The NTF predicted fatigue damage Dp from the analysis using Np =  30 waves, then, 

is
N p

DP =  TduE[Sh) =  53 njS j  ; n5 =  NwPj (4.17)
y=i
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Figure 4.11: Wave heights and periods for the 30 waves used in the NTF model

where Sj  is the predicted ship load, rij is the predicted number of wave cycles for the 

j th  H -T  pair, and Nw is the total number of predicted wave cycles in duration 7*. 

Since the ship is moving into the waves the number of wave cycles encountered by the 

ship and the resulting number of stress cycles depends on the speed of the ship [1 1 ]. 

The number of wave cycles Nw =  i/mcTd, where i/enc is the wave cycle rate encountered 

by the ship moving into the waves at speed u and is found from the theoretical (from 

wave spectrum) wave cycle rate v as:

(Jenc =  w +  uPu/g ; u  =  2iru (4.18)

where Venc =  <*>enc/27r and g is the gravitational constant. For our example, u =  

0.128Hz for the example JONSWAP spectrum used and u =5.144m/s, thus i/enc =
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Figure 4.12: Damage prediction from response to selected sinusoidal waves. The 
single-wave cycle responses are used in this prediction.

0.182Hz.

We will first consider whether we need side waves to “better” predict fatigue 

damage. We will investigate this by first predicting damage from sinusoidal waves 

without constructing side waves. For each of the 30 waves shown in Fig. 4.10, we 

construct a regular sinusoidal wave for each H -T  value and step the ship through 

this one wave cycle to get a corresponding ship load (or stress) cycle. From this one 

load cycle, we pick the sag bending moment as the largest positive bending moment 

in the cycle. Similarly, the hog moment is the largest negative bending moment in 

the cycle. From the 30 sag or hog moments we can then use Eqn. 4.17 to find the 

predicted damage. Fig. 4.12 compares predicted damage for the selected set of 30 

waves w ith o u t side waves.
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The sag damage seems to be underpredicted by about 25% at 5 =  1 , 70% at 

5 =  4, and by about 90% a t 6  =  10. Note, however, that this prediction is better 

than the linear sag damage shown in Fig. 4.5. Recall the linear model underpredicted 

damage by about 90% for 6  =  4 and by almost 2 orders of magnitude at 6  =  10. 

The predicted hog damage from the sinusoidal waves seems to be in good agreement 

over the range of 5 values shown. If, instead of the single-cycle bending moments, 

we look at the “steady-state” predicted bending moment for each of these sinusoidal 

waves, we find some improvement in the predicted sag damage (see Fig. 4.13). By 

the steady-state moment, we mean the peak response of the ship after several cycles 

of the same wave so that the any transient effects will have stabilized. In this case, 

the model underpredicts sag damage by about 10% at b = 1 and by about 30% at 

5 =  4. Note that for large 5 values the steady-state damage is now overpredicted (for 

example, by about 50% at 6  =  1 0 ). The hog damage is still in good agreement with 

simulated damage.

If we predict damage based on the 30 waves, now w ith  side waves (see Fig. 4.10), 

we find the predicted sag damage to be in good agreement with the simulated sag 

damage (see Fig. 4.14). This prediction seems to be very close to the exact damage, 

when compared with linear predicted damage in Fig. 4.5. The hog damage, however, 

seems to be overpredicted for small 5’s by about 30% and underpredicted for large 

6 ’s by about 2 0 %.

Finally, if we choose to use only 15 waves instead of 30, the resulting sag and 

hog fatigue damage agreement (see Fig. 4.15) with simulated data reduces for large 

5’s. In this case, we choose 5 different wave heights based now on a transformation 

of Gauss-Laguerre quadrature points and for every wave height we choose 3 wave 

periods based on Gauss-Hermite quadrature points [69]. The resulting choices of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 4. NONLINEAR SHIP LOADS 130

Sag 
“ Hog-  1 - 7 50

8  1.5
ill
^  1-25
o>
1  1

Q 0.75

0.5 
o.

0.25
0  i i i i i i i i------

1 2 3 4 5 6 7 8 9  10
S-N Exponent, b

Figure 4.13: Damage prediction from response to selected sinusoidal waves. The 
steady-state responses to each of the regular sinusoidal waves are used in the predic
tion.

wave parameters are shown in Fig. 4.16. In quadrature point selection, the main idea 

is to transform N  standard normal or exponential random variables that have been 

selected to give 2N  — 1 moments exactly. Standard library routines can be used to 

find these quadrature points which can then be transformed using Gqns. 4.14 or 4.15 

at corresponding fractiles of the random variables.

To summarize, we considered four different prediction models above: (1) single

cycle regular wave model, (2) steady-state response due to regular wave, (3) single

triplet response due to 30 regular waves with side waves, and (4) single-triplet response 

due to 15 regular waves with side waves. We find that each of these four models predict 

at least the sag damage better than a linear model. The steady-state response offers
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Figure 4.14: Damage prediction from response to selected waves with side waves. 30 
wave triplets have been used in the fatigue prediction.

an improvement over the single-cycle regular wave model. The predictions improves 

further on including side waves and stepping the ship through single-triplet for each 

selected H -T  pair. Finally, the agreement with simulated damage degrades slightly 

when reducing the number of waves from 15 to 30. Note that estimation of stresses 

and the resulting fatigue damage in each of the four models took only about 10 to 15 

minutes of computer time on a HP 9000 workstation, while generation of 20 hours of 

simulated stresses from the random waves took about 6  days on the same computer.

In the subsequent studies, we will consider model 3 (single-triplet prediction with 

30 H, T  pairs) to be the base case model and attempt to further improve the agree

ment with simulated exact damage.

We should recognize, however, that the level of agreement seen in any of the
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Figure 4.15: Damage prediction from response to selected waves with side waves. 15 
wave triplets have been used in the fatigue prediction.

prediction models may be due to offsetting errors. For example, the model could 

be predicting too large bending moments from the limited wave runs, however, the 

absence of any scatter effects in the model could be causing a reduction in the resulting 

predicted damage from the too-large bending moments. By an absence of scatter 

effects, we mean using only a single stress value to represent several stresses, generally 

random in nature, in each H -T  cell (see Sec. 4.6.2).

In order to diagnose these effects, we should first compare the predicted bending 

moments directly to the simulated bending moments. Any mismatch at the bending 

moment level should be corrected for, and then the scatter effects should be included 

to find fatigue damage. Another effect to be accounted for is the difference in the 

periods of the input wave cycle and resulting ship load cycle. We will look at the
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Figure 4.16: Wave parameters of the 15 waves used for predicting ship response. The 
wave heights and wave periods have been obtained using quadrature points. (Note 
the largest wave period for the smallest wave height has not been shown in this plot, 
to facilitate direct comparison of these parameters to the ones in Fig. 4.11)

following effects in sequence to diagnose their impact on fatigue prediction:

•  Inclusion o f cycle du ra tion  correction  (Sec. 4.6.1): Typically, in an irreg

ular history of a given duration the number of wave cycles and the number of 

ship load cycles are different because the time domain analysis is not a static 

analysis. Prediction of damage per load cycle from damage per wave cycle 

thus may require a modification factor accounting for the duration difference 

that may exist between a load cycle and a wave cycle.

•  Inclusion o f sca tte r  effects in lim ited  wave pred ic tion  (Sec. 4.6.2): In 

the NTF model, the idea is to consider only a limited, discretized set of wave
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height-period pairs, (H,T)i , and calculate the stress Si =  S(H,T)i  associated 

with each. The mean value F[56] -  which is proportional to the mean damage 

-  is then estimated from the NTF model as

Here p,- is the probability of falling into the i-th {H — T)  cell, centered at 

(H, T){. Assuming this probability p, is correct, the “true” value of f?[S6] under 

the nonlinear simulations is

Thus, the critical assumption of the NTF model is quasi-static behavior, so that 

a  wave with height H  and period T  always produces the same stress S=S(H,  T), 

irrespective of the past wave/stress history. In this case, because S  is determin

istic given H  and T, E[Sb\H,T]=S(H,T)^  and the NTF result becomes exact. 

Deviations from quasi-static behavior will produce a  scatter among values of S  

given the same H  and T,  and hence E[Sb\H,T\  will generally exceed S (H ,T )b 

(at least for 6  > 1). This effect will generally be a function of both the ship and 

the seastate; it will be studied here for the particular ship and seastate under 

consideration.

• Inclusion of bias correction (Sec. 4.6.3): Although we attempt to get unbi

ased load predictions from limited wave runs, we may have a bias in our model 

predictions, i.e., on average the predicted stress from a wave triplet may be too 

large or too small compared to a mean simulated stress corresponding to such

£ [ s W  =  2 > s ( f f , : r ) J (4.19)

(4.20)
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waves from irregular waves. Any such biased estimates could be due to the 

inherent limitation of load prediction from short wave segments [56]. We may 

seek to  correct for any such bias before we predict fatigue damage.

4.6.1 Modeling Duration Correction Effects

The mean damage rate based on ship load cycles is viDi oc viE[Sb], in which Dt is the 

mean damage per load cycle and ui is the load cycle rate. The mean damage rate

in the NTF model is based on the wave cycles, since we estimate a single stress (sag,

hog, or range) for a selected wave height and period. The mean damage rate from 

the NTF model then is uJU Z oc vwE[Sb], in which Dw is the mean damage per wave 

cycle and uw is wave cycle rate. Since the actual damage per unit time occurring 

on the ship is the same, whether based on load cycles or on wave cycles, we should 

have viDl =  urDw. In the NTF model, we base damage estimates on the theoretical 

wave cycles encountered, so E[Sb], which yields damage per load cycle, should be 

corrected appropriately to account for the duration difference between a load cycle 

and a wave cycle. Thus, we could say

A . =  — A ; or D„ =  5 2 2 LD, (4 .2 1 )
Vw 1 load

in which and Tioad are the periods of a wave and the corresponding ship load 

cycle, respectively. Thus, the total damage based on wave cycles (from Eqn.s 4.17 

and 4.21) is

Np j .
Dp =  53 TijSb J ravej ; nj =  no. of wave cycles in cell j  (4.22)

j=z 1 -MoadJ
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where is the duration correction for the j th  wave and predicted load

cycles.

In this study, we find when converting the damage per wave cycle to damage per 

load cycle, the impact of this correction on the damage estimate seems insignificant 

as Fig. 4.17 demonstrates. Notice how the inclusion of the duration correction makes 

practically no difference in the prediction in either the sag or the hog damage. An 

explanation for this may be that the damage-contributing loads have the load cycle 

periods very close to the underlying wave cycle periods, the analysis being quasi

static. We therefore propose not to include this correction in the subsequent results.

4.6.2 Modeling Scatter Effects in Ship Loads

For the waves shown in Fig. 4.11, each denotes a wave pair and is considered 

to represent the mid-wave values of the wave parameters for the cell around it. We, 

then, represent the entire H-T domain by 30 cells (in this example), each of which is 

represented by the mid-cell H-T pair. We empirically model the scatter effects from 

the simulated load history by binning the 2 0  hours load history in this H-T space and 

modeling the resulting load scatter in each cell. In each load cycle, we identify the 

loads as, (1 ) sag: the maximum (positive) load in the cycle, (2 ) hog: the minimum 

(negative) load in the cycle, and (3) range (=sag+hog). The 2-dimensional binning 

of each of the ship loads is then based on the H-T of the wave cycle causing this load 

cycle.

The mean n and standard deviation a  of the binned loads in every cell results 

in a coefficient of variation COV =  a /n  of the ship loads. A straight line fit to this 

simulated COV vs. wave heights is referred to, in this study, as the empirical COV
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Figure 4.17: Demonstration of impact of duration correction on predicted fatigue 
damage for sag and hog bending moments
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(see Figures 4.18 and 4.19). Here Ti,T2 ,T3 refer to the 84, 50 and 16 percentile 

conditional periods given the wave heights (see Fig. 4.11 for actual values of these 

periods). In general, the COV values in the cells may depend on the bin size. In this 

study, however, we find that making the 2D bins 4 times smaller or make it 2  times as 

coarse, still results in about the same COV values, suggesting that COV dependence 

on bin size seems to be insensitive to a broad range of bin sizes.

In order to understand the impact of scatter effects on fatigue damage prediction, 

we bin the simulated bending moments according to the chosen 30 pairs of wave 

parameters, and then compare the exact simulated damage to that estimated only 

from the mean simulated loads S  in the bins as done in the prediction models. The 

simulated damage without including scatter effects gives the total damage as

N„ _

Dt =  53 ni (^) > nj  = number of load cycles in cell j  (4.23)
i=i 3

Figure 4.20 shows a ratio of total damage from this model (Eqn. 4.23) to the exact 

damage (Eqn. 4.9).

As seen, Eqn. 4.23 (damage without scatter effects) will underpredict the fatigue 

damage by as much as 25% for steel materials ( 6  =  4) and by about 60% for composite 

materials (b =  10). Because of nonlinear effects, the hog loads are typically smaller 

than the sag loads (see Fig. 4.4), and so if scatter effects are ignored, the hog damage 

is affected more than sag; also the range (=  sag +  hog) dominated by sag contribution 

is influenced by the scatter effects in a manner similar to the sag load. As a simple 

example, the extent to which scatter effects m atter can be seen when estimating EfS2] 

from S:

£[S2] =  Var [S] + S 2 = S 2 (l  + COV2) (4.24)
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Figure 4.18: Coefficient of Variation (COV) of simulated ship loads (sag and hog) for 
H-T cells in Fig. 4.11
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Figure 4.19: Coefficient of Variation (COV) of simulated ship loads (range) for H-T 
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Figure 4.20: Demonstration of need for scatter estimate of response in H-T cells
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where Var[5] denotes the variance of S. A factor 1  +  COV2  larger than 1  is needed 

to inflate i? 2  to find i^iS12] exactly; similarly, still larger factors will be required to 

estimate £ [S6] from 5* for 6  > 2. As demonstrated in the following sections, we strive 

to predict exact £[£*] from a Weibull model calibrated only to the first two moments 

of 5.

In order to include scatter effects in the predicted damage, we use the NTF pre

dicted bending moment in a cell and the empirical COV in that cell to calibrate 

a Weibull model for the load in that cell. For a Weibull load (S ) model with 

shape parameter a  and scale parameter 0, the exceedance probability is P[S >  s] =  

exp[—(s//?)a], where a  and 0  are tuned to the NTF predicted bending moment and 

the COV in each cell. Fatigue damage, proportional to F [56], is then found from this 

fitted Weibull model as £ [S 6] =  ^ T ( l  + b/a). A weighted sum of this F [56] across 

all the cells results in the total predicted fatigue damage.

Fig. 4.21 shows the predicted damage from the 30 wave triplets, including the em

pirical COV estimate, compared to exact damage for sag and hog bending moments. 

Inclusion of scatter effects for sag damage prediction, further improves the damage 

prediction. Now the predicted sag damage is within 10% error for all 6 ’s shown in 

the plot. Again, compare this with the linear damage estimate in Fig. 4.5 that con

siderably underpredicts the sag damage. The hog damage, on the other hand, seems 

to be on the conservative side at all b values, on including the scatter effects. Note, 

however, that at 6  =  1 the hog damage is overpredicted by about 35%, implying 

that this may be a case where triplet-wave hog moment prediction is biased towards 

too large hog moments. We will investigate this in the next section, where we will 

compare the predicted moments to the mean simulated moment in each cell.
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Figure 4.21: Demonstration of impact of inclusion of scatter effects in the predicted 
fatigue damage for sag and hog bending moments
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4.6.3 Inclusion of Bias Correction in the Prediction Model

To compare predicted bending moments to the simulated bending moments, we bin 

the 20 hours of nonlinear bending moments according to the 30 H , T  pairs (shown in 

Fig. 4.11). Figures 4.22 and 4.23 show a comparison of the mean simulated bending 

moments to the predicted bending moments in each H, T  cell as a  function of a =  H/2. 

In this figure, T l, T2, and T3 refer to the 16-, 50- and 84- percentile period values at 

the given H value (see Fig. 4.11 for actual values of the three periods given H). The 

predicted sag bending moment compares closely to the simulated sag moment, on 

average. This observation is in agreement with the close comparison we find for sag 

damage prediction at 6  =  1  in Fig. 4.21a. The hog bending moment is systematically 

overpredicted by approximately 2 0 % and, consequently, the range bending moment 

is overpredicted by about 10%. These overpredictions may be due to an intrinsic 

limitation of the model in predicting hog moments from wave triplets. In any case, 

these overprediction factors can be treated as bias corrections to the predicted bending 

moments when estimating fatigue damage. As a result the predicted hog bending 

moments should be reduced by a factor of about 0.85 (fa 1/1.20) and the range 

bending moment by a factor =  0.92 (fa 1/1.0). The bias correction factors may 

also be found from Fig. 4.17b, where the model overpredicts the hog damage by 

approximately a factor of 1.35. Consequently the range (=sag+hog) moment will be 

overpredicted by a  factor of about 1.175 [= (l+1.35)/2j. No bias correction will be 

applied to the sag bending moment damage prediction. We will now investigate the 

impact of these bias-corrections on fatigue damage.

Fig. 4.24 compares the predicted hog damage, with and without any bias correc

tion, to exact damage. Note that all the hog damage predictions here include the 

scatter effects. As a  result, the bias-corrected prediction is now from Weibull stress
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models in each cell, where a  and (3 have been tuned to the bias-corrected hog bend

ing moment and to the empirical COV from Figs. 4.18 and 4.19. Note how good 

the agreement in the predicted and exact damage is, when including the bias factor 

of 0.85. When a reduction factor of 0.75 is used, the first moment 2?[S], of course, 

matches the exact value, however, damage for 6  > 1  seems consistently underpre

dicted. Further investigation on an optimum choice of the bias factor has not been 

done in this study. Realize, however, that in order to calibrate any bias-correction 

factor, a limited nonlinear analysis will have to be performed on irregular waves, as 

similarly required in obtaining the COV corrections.

Finally, we present a  comparison of the NTF predicted damage together with the 

linear damage results compared to the nonlinear exact damage on the same plot. 

This is to directly study the difference in results. Note that no new results are
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Figure 4.24: Effects of including bias-correction in hog damage prediction

being shown here, though. The NTF prediction includes bias-corrections for hog 

(factor=0.85) and range (factor=0.92) bending moments and includes the scatter 

effects for all three: sag, hog and range bending moments. Figures 4.25 and 4.26 

show a comparison of total fatigue damage in 2 0  hours in this example seastate 

from the NTF model and from linear theory compared to simulated total nonlinear 

fatigue damage for a range of S-N exponents. Recall the significance of this example 

seastate is that according to linear theory it contributes most to the long-term fatigue 

damage (see Fig. 4.6) for an S-N exponent of 4. As seen in Fig. 4.25a, linear theory 

considerably underpredicts fatigue damage for sag bending moments, while the NTF 

model offers excellent prediction over the entire range of S-N exponents. For hog 

fatigue damage, the NTF prediction is much closer to simulation than is linear theory. 

For range bending moments, considered in damage prediction using Miner’s rule, we
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see that linear theory underpredicts damage while the NTF prediction is very close 

to simulation.

In summary, linear theory considerably underpredicts sag and range loads and 

damages, while the NTF model offers excellent agreement with the nonlinear loads 

and damages.

Note that the 20 hours of nonlinear irregular wave simulation used in this study 

took about 160 hours («  6.5 days) of total computer time, while the NTF model 

without the COV or bias correction took only about 10 minutes of computer time. 

While the complete nonlinear analysis is only a  2-D analysis, a 3-D analysis of the 

nonlinear responses is predicted to take about 10 to 20 times longer than the 2-D 

analysis. In conclusion, the NTF model appears to offer an economical alternative to 

complete nonlinear time domain analysis for estimating fatigue damage.

4.7 Conclusions

In this study, we propose a “Nonlinear Transfer Function” model for estimating fa

tigue damage from a limited set of sinusoidal waves and their associated probabilities 

from stochastic process theory. A simple version of the NTF model, where for each 

selected wave height and wave period we construct side waves and apply the wave 

triplet on to the ship. The resulting set of stress (sag, hog, and range) for selected 

set of waves, along the theoretical probabilities of seeing the waves can be used to 

find predicted fatigue damage estimates. This damage estimate agrees well with that 

estimated from a complete random wave analysis, which is general is an expensive 

calculation. A linear analysis, on the other hand, appears to severely underpredict 

the sag-induced damage, while the hog damage seems to compare with the nonlinear
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time domain analysis in random waves. Note the NTF predicted damage took on the 

order of minutes of computer time, while the random wave analysis studied here took 

about 8  hours of computer to simulate 1  hour of stress time histories.

The agreement in the NTF prediction can be improved further by accounting 

scatter, effects in the observed stresses. The hog damage estimation appeared to 

require a bias correction in addition. We propose use of short duration simulations 

in random waves in order to estimate the scatter effects and to estimate the bias 

factors for hog and range stresses. This still alleviates the need for long simulations 

to find exact fatigue damage estimates. For this flared ship in ship-length tuned 

seastate considered, we find the current state-of-the-art spectral analysis methods to 

yield considerably unconservative sag fatigue damage, and overpredict hog fatigue 

damage, and find that the NTF model offers a cheaper alternative and yields a more
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precise estimate of fatigue damage when compared to that from nonlinear time domain 

analysis in random waves.

Further studies should be done to investigate generalities of this model: across 

different ship models, across different seastates. We speculate that the NTF model 

(single-triplet predictions) should be able to successfully predict damage in other 

seastates as well, since the seastate chosen here was supposed to severely test the 

model.
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Chapter 5 

Ship Fatigue R eliability

5.1 Introduction

This chapter describes a fatigue reliability analysis for the ship structure considered 

in Chapter 4. A general methodology for fatigue analysis is presented and numerical 

results are shown for a specific application to ship structures. The methodology 

presented here is largely adapted from [28].

5.2 General Fatigue Formulation

The assumption is that a complete reliability formulation generally includes uncer

tainly in three distinct aspects:

1. The loading environment, characterized here by random variables;

2. The gross level of structural response, given the load environment; and

3. The local failure criterion, given both the load and the gross stress response.

151
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The general fatigue formulation requires three functional inputs: f x x (an), fs\xx (s|an) 

and N/(s)  to characterize the load, response and fatigue damage, respectively. Here 

f x i(an) is probability density of the environment variable fs\xAs\xi)  is condi

tional probability density of the gross stress S  given X \  and Nf(s)  is the number of 

constant stress cycles with amplitude s after which the component fails. The mean 

damage rate D  is found by integrating over all load and response levels xi and s:

n « r  rim&pm*odsdXl (U)
Jxi=Q Js=0 Nf (s)

If failure is defined when damage reaches a threshold A, we have the time to fail

Tf  = A /(/ol5) (5.2)

where /o is the stress cycle rate. If Miner’s rule is correct we would assign A =  1 . 

More generally, variability in A would reflect the uncertainty in Miner’s rule, i.e., 

the effect of predicting variable-amplitude fatigue behavior from constant-amplitude 

tests.

For the reliability analysis, the failure criterion is taken to be the difference be

tween the computed fatigue life Tf  in Gqn. 5.2 and a specified target lifetime, Tt.

G(X) = T f  — Tt (5.3)

G(X)  is known as the failure state function that depends on all the associated random 

variables X.  G(X)  is positive when the component is safe and negative when it has 

failed. First-order reliability methods (FORM) [36] can be used to find the failure 

probability, P / =  Prob.[G(X) < 0].
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We examine each of these in turn below for an offshore structure.

5.2.1 Load Environment

We assume that the long-term environment can be characterized by one environment 

variable X v  This could be Ha, the significant wave height describing the short-term 

climate conditions. A distribution of X i  should be chosen to describe the long-term 

variation of the climate along the ship route (e.g., [10]). In this study, we choose the 

wave heights H, instead, as the environment variable X\, and describe it by a long

term Weibull distribution. Note that H  is a local wave height that is the distance 

from the minimum elevation to the maximum elevation in wave cycle. Here, a  wave 

cycle is the wave surface between two mean upcrossings.

In a short-term seastate with given Ht (typically lasting 1  to 6  hours), we assume 

H  to be Forristall distributed (see Chapter 2). Note that in the ship fatigue anal

ysis studies (Chapter 4), we had found that the Forristall model well predicted the 

simulated wave heights. This short-term distribution is given as

Prob.[H' > h] =  exp
{h/a,,)2.126

8.42
(5.4)

in which =  Ht f  4. The long-term distribution fLr(hLT) of the wave heights can be

found from the short-term Forristall distribution }sr{h\Hs) given H„ as

f v r M  =  f°° fsr(h \H s) fH.(h,) dhs (5.5)
Jh,=0

in which /».(h*) is the long-term distribution of Hs. To demonstrate the methodology 

in this study, we arbitrarily assume H„ to have a Weibull distribution with mean 

E[Hg] =  3 meters and variance Var[Ha] =  3.6 m2  [36]. in Eqn. 5.5 above,
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is approximated to be a two-parameter distribution type. The two parameters are 

calibrated to the first two moments E[Hlt] and E[H£t ] of the long-term wave heights. 

These moments can readily be found from the conditional distribution as

E[Hl t ) =  E h.[E[H\H,}] ; E[H\t ] =  E h.[E[H2\Hs]\ (5.6)

where Eh,Q indicates taking expectation of random variable Ht . From these calcula

tions we find the mean and the coefficient of variation (COV) of the long-term wave 

heights to be:

E[Hl t ) =  1.81meters COV [i^T] =  0.857

5.2.2 Gross Response

The stress response a t the location of interest is, in general, random in nature and 

dependent on the underlying environment X\.  The stress may be described by a 

conditional distribution /s|x,(s|a:i), which is assumed to be a two-parameter distri

bution type in this study. The two parameters are found from the conditional mean 

and standard deviation of of the stress S  given the environment variable X \  denoted

S \X x.

For this study, we select the same ship as considered in Chapter 4 and use the 

nonlinear time domain analysis program NV1418 [13] to find the stresses in random 

wave conditions. We again select the seastate described by H t =  5m and Tp = 10s to 

analyze the ship response. Recall that this was the most damaging seastate according 

to a linear analysis and expect to be so even according to a nonlinear analysis. The 

mean relation of S \H  found from this seastate should, generally, be applicable for
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all wave heights H  regardless of the seastate. The wave period dependence of the 

stresses (ignored in this study) may, however, effect the scatter of stresses about the 

mean regression line; and this scatter is likely to be seastate- or ^-dependent.

For each wave height in this one hour seastate we find the corresponding bending 

moments (sag, hog, and range) in the response history. A regression analysis of the 

form E[S\H\ = aHp was performed, to fit the mean bending moment (or stress S) 

given H. We used a nonlinear least-squares regression method called Levenberg- 

Marquardt method [48] as implemented in Gnuplot [6 8 ] to estimate the mean values 

of the parameters a, p, their standard errors cra, crp and correlation pap for this data 

set. The standard errors reflect the uncertainty in the estimated parameters due to 

limited data. The regression assumed a constant conditional standard deviation <?s \h , 

although this scatter should generally increase with increasing wave heights. In this 

illustration, we assume that the bending moment can be converted to stresses by 

simply dividing by an appropriate section modulus.

Note that the regression is based on only one seastate, the most damaging seastate. 

The mean regression line is assumed to be valid across all the seastates. The variability 

of stresses os\h about this mean trend, in general, may vary across different seastates. 

In this example, however, we will assume no uncertainty in the estimated c t s \h - 

As mentioned earlier, from one hour simulation of bending moments in irregular 

seas (Ht =  5m and Tp =  1 0 s), we relate the wave heights to the corresponding sag, 

hog, and range bending moments (BM) assuming the following functional form:

£[BM |tf] =  a W  (5.7)

Figs. 5.1 and 5.2 show the resulting regression fits to the simulated bending moments. 

Table 5.1 gives the numerical values of the estimated parameters.
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Figure 5.1: Nonlinear least squares regression analysis to fit sag, and hog bending 
moments to wave heights from 1  hour simulation of bending moments in seastate with 
Ha =  5m, and Tp = lOsec.
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Figure 5.2: Nonlinear least squares regression analysis to fit half-range bending mo
ments to wave heights from 1  hour simulation of bending moments in seastate with 
Hg =  5m, and Tp =  lOsec.

In converting the bending moments to stresses we will use a constant section 

modulus (=  35 m3, here). In the subsequent reliability analysis, we will addition

ally multiply the stresses by 10~ 3  to convert to units of MPa (or N/mm2) so as to 

consistently use the S - N  data also given in MPa.

5.2.3 Failure Measure

We assume that fatigue test data are available at constant stress amplitudes to esti

mate the S-N curves. These curves present the number of stress cycles to fail for a 

given constant stress amplitude load on the fatigue specimen. We use Miner’s rule 

to assign damage 1  /N f(s)  due to a single stress amplitude s. The fatigue damage is 

then characterized by D, the mean damage rate. Any variation about the mean rate
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Table 5.1: Estimated mean and standard deviation of the regression parameters for 
bending moments (kN.m) given wave heights. The bending moments have been di
vided by 1 0 5.

Moment a o* P Pap <Js \h
Sag
Hog

Half-Range

0.453
0.617
0.504

0.0284
0.0354
0.0276

1.168
0.619
0.951

0.0404
0.0410
0.0366

-0.972
-0.945
-0.965

0.746
0.593
0.592

will average out when accumulating damage across the high-cycle fatigue applications 

of interest here. As a result the fatigue damage is characterized by only the mean 

damage rate D, and hence by only the S-N curve.

As described in Chapter 4, typically the S-N curve is specified as

N  = CS~b (5.8)

where C, b are the intercept and the slope of the fitted curve to log S  to log N  data. In 

general, both C  and b are random in nature and C  typically shows a large uncertainty 

-  COV of the order of 50 to 60%. The regression relation gives the mean number of 

stress loading cycles N  with amplitude S  that a fatigue specimen can tolerate before 

failing [14]. Typical values of b for steel material may be 3-6, and may be as high 

as 7-10 for composite materials. Values of S - N  parameters for offshore structure 

materials and their uncertainties can be found in various literature, including API [2] 

and SSC reports [43] among others.
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5.3 Results

5.3.1 Numerical Values for Random Variables in Fatigue Anal

ysis

Recall that the sag stresses cause fatigue cracks at the ship bottom and the hog 

stresses cause fatigue cracks in the ship deck. Other approaches use the stresses 

due to the range bending moments to analyze the fatigue cracks at either of these 

locations. Of interest is the fatigue reliability of an element (here, at the ship bottom 

or the ship deck) in a specified lifetime. We will show that using the sag, hog or 

range stresses generally leads to different estimates of reliability or the probability of 

failure.

The input random variables in the example fatigue analysis and their values are 

given in Table 5.2. The random variables listed here are common to the three stress 

cases (sag, hog, and range) we consider here. The COV values in Table 5.2 have 

been arbitrarily chosen and should generally reflect the uncertainty in the parameters 

either due to limited data or due to lack of knowledge. The parameters relating 

stresses to wave heights are given in Table 5.1. To calibrate the median time to fail 

Tf  to a desired lifetime, we introduce an additional factor 8 in Eqn. 5.2 so that we 

have
CA

T'  =  6-MSCF? <5 - 9 >

In this equation, we set all the random variables to their median values and calibrate 

8 so that we get Tf  =  200. Table 5.3 gives the values for 8 for each of the three cases.

Using the above random variables, we performed a FORM analysis to find the 

failure probabilities for a range of specified target lifetimes. In order to find the failure
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Table 5.2: Numerical values of means and COVs of random variables and their dis
tribution types used in fatigue formulation. These are common to all three stresses: 
sag, hog and range.

Variable Mean COV Dist.Type Description
E[XJ 1.81 (m) 0.05 Normal Mean of Long-term H

COV[X!] 0.857 0 . 1 Normal COV of long-term H
/o 0.1 (Hz) 0 . 2 Normal Stress cycle rate

SCF 2.5 0 . 1 Normal Stress concentration factor
C 2.4xl0 15 0.5 Weibull S-N factor
b 4 0 - S-N exponent
A 1 0 . 1 Normal Damage threshold

Table 5.3: Calibrated factor S for the three cases: sag, hog and range. Note that 8 is 
a deterministic variable.

Variable Sag Hog Range
6 1.232 0.0213 0.0826

probabilities, all the random variables X  are first transformed into a uncorrelated 

normal 17-space. The failure state function G(X) =  0 is evaluated in the normal 

17-space and gradient search methods are employed to find where it is closest to the 

origin, also known as the design point. Approximation of the failure probability if 

obtained by fitting a tangent plane (first-order reliability method, FORM) and a 

parabola (second-order reliability methods, SORM) to the failure state function at 

the design point. The direction cosines of the vector that defines the design point are 

the relative measures of the importance of each of the random variables.

Fig. 5.3 compares these failure probabilities for the three different cases. The 

Pf estimates are somewhat different for the three stress cases. For a given target 

lifetime, the sag stress gives the largest Pf  followed by range stress, and then the hog 

stress Even though the median time to fail is the same in all the three cases, we see
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such a difference because of the different conditional trends of the stresses given the 

wave heights that imply different magnification of the wave parameter uncertainty. 

Since the sag trend shows the largest nonlinearity, the wave parameter uncertainty is 

amplified the most among the three and this results in the largest Pf for given service 

lifetime. For example, at around the typical design life of 20 years, the sag case gives 

Pf  =  0.014, the range case gives Pf  =  0.011, while the hog case gives Pf  =  0.0086. 

Recall that hog stresses may cause cracks in the ship deck, while the sag stresses cause 

cracks in the ship bottom. The Pf  comparison then implies that the element at the 

ship deck is about 1 . 6  times as likely to fail compared to the ship bottom element, 

even though both have Tf  =  200 years.

5.3.2 Importance Factors of Physical Random Variables

Table 5.4 gives the values of the random variables at the design points and their 

uncertainty contributions (squares of the direction cosines) for each of sag, hog and 

range cases.

The values of the random variables at the design point can be used to design 

the structural element and the FORM analysis would predict the design to yield the 

reliability level as indicated in Fig. 5.3 for a service life of 20 years. This table also 

indicates the relative importance or uncertainty contributions of the different random 

variables. In all the three cases, we see that the S-N factor C carries the most 

importance, followed by the SCF and the environment variables. The environmental 

variables seem to relatively more important in the sag case than in the hog case. This 

again is due to the nonlinearity in the stress to wave height relation where the sag 

stress amplifies the uncertainty contribution of the environment variables more than 

the hog stress. In the range case, the environment importance seems to be between
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Table 5.4: Values of associated random variables at “failure” point and their uncer
tainty contributions (for Service life of 20 years)

Sag Case
Var. Value Uncert. Contrib.

E[Xx] 1.846 0.032
COVfXx] 0.9296 0.148

a 0.4491 0.004
P 1.175 0.004
fo 0.1064 0 . 0 2 1

SCF 2.660 0.085
C 5.363E+14 0.700
A 1 . 2 1 0 0.006

Hog Case
Var. Value Uncert. Contrib.

E[Xx\ 1.830 0.009
COV[Xx] 0.8790 0 . 0 1 2

a 0.6166 0 . 0 0 0

P 0.6214 0.004
fo 0.1067 0 . 0 2 0

SCF 2 . 6 6 8 0.079
C 3.458E+14 0.871
A 0.02093 0.006

Half-Range Case
Var. Value Uncert. Contrib.

E[X j 1.840 0 . 0 2 1

C O V ^ ] 0.9087 0.069
a 0.5015 0 . 0 0 2

P 0.9555 0 . 0 0 2

fo 0.1066 0 . 0 2 1

SCF 2.665 0.082
C 4.216E+14 0.798
A 0.08115 0.006
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Figure 5.3: Failure probabilities for a range of target lifetimes for the three stresses: 
sag, hog and range

the sag and hog cases.

In the next section, we illustrate how techniques based on FORM -  in particular, 

the inverse FORM method -  can be used in design of fatigue-sensitive components. 

For purposes of illustration, we focus on a two variable case which assumes only the 

values of SCF and of C to be uncertain. The general approach can be extended to a 

larger number of variables, however.
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5.4 Selection of Material Properties in Design to 

Achieve Desired Reliability

In the previous section, we saw that the stress concentration factor SCF and the S-N 

factor C seemed be of most importance compared to the other associated random 

variables in the fatigue analysis (especially true in the hog stress case). Here we 

demonstrate a methodology to select the SCF and C values for an element design, 

assuming these two variables carry all of the importance. This selection is to be based 

on the objective of achieving a certain given reliability /? in the fatigue design.

5.4.1 Forward FORM

We first restate the forward FORM problem, where the analysis proceeds as shown 

in the previous section for sag, hog and range stresses. Here, the distributions of SCF 

and C are specified and we find the resulting reliability level from FORM analysis. 

Eqn. 5.2 can be rewritten as

CA  
/ 0 SCF6£[S6]7 / =  (5-10)

in which we assumed D  is given as E[Sb\/C  scaled by the SCF. In this example, 

we will model the only uncertain parameters, SCF and C, as independent lognormal 

variables:

SCF =  K e SCF  ; C  =  6 e c  (5.11)

in which K and C  are the median values of the random variables SCF and C, respec

tively. escf and Ec are unit median lognormal variables with coefficients of variation 

Vscf and Vc, respectively. The remaining parameters in Eqn. 5.10 are assumed to be
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deterministic. We can rewrite 7 /  as

T, = ff^ r- (5-12)
eSCF

in which ' t f  now indicates the median time to fail. Recall this was taken to be 200 

years in the fatigue analysis example. Note that the assumption of only two variables 

that are independent and lognormally distributed is not critical here.

The G (X ) function 5.3 can be conveniently rewritten as

G W  =  ,og @ ) = , o g ( | g ) = , o g ( g )  (5.13,

where 7  =  T f/T t is a  ratio of a design lifetime to a specified service lifetime. Larger 

7  values indicate smaller service lifetimes compared to the design lifetime.

For the forward FORM problem, we choose 7  =  10 implying the design life is 10 

times the service life and assume Vsc f  =  0 .1 , Vc = 0.5 (as in the earlier example). 

The S-N exponent 6  =  6 , say. We find the failure probability to be Pj =  1.27xl0~3 

or reliability /3 =  3.02 and the design point is e*c  = 0.41, elcp =  1.267. This says 

that we need to choose about 41% of the median C value (S-N curve) and should 

increase the median SCF by about 27% to get a 0  of 3.02. If we wish to use another 

material (another 6  value), we will need to rerun the forward FORM analysis to find 

the resulting reliability. This reliability will be different than 3.02, in general. Now, 

in a design scenario, where we wish to achieve a specified 13 value and then find the 

design point e*c  and when using different materials, it is easier to solve the inverse

FORM problem.
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5.4.2 Inverse FORM

The idea of an inverse FORM analysis is to select the design parameters to achieve a 

certain given reliability 0. This idea has been demonstrated earlier to provide envi

ronmental contours for structural response analysis [74] of offshore structures against 

ultimate collapse limit states. This idea also finds application in earthquake engineer

ing [4 ] where magnitude-distance contours are provided for performing probabilistic 

seismic hazard analysis of structures.

The first issue in the inverse FORM analysis is to find the locus of all points 

in the normal 17-space each of which would yield the same probability of failure for 

a failure state function passing through the point as a tangent line. This locus of 

points for the two-variable case happens to be a circle of radius /? around the origin. 

This is shown in Fig. 5.4, where the dashed line indicates G(X) =  0. The circle in 

17-space (U x, 172) can be transformed to the physical space ( e c  and £ s c f )  by first 

transforming 17i marginally and then conditionally transforming 172 using the given 

distribution functions of the physical variables. The transformed circle is what we 

call as a  “material” contour.

Note that the material contour only depends on the distributions of ec  and escF- 

This contour can be estimated regardless of the S-N exponent b and regardless of the 

design life to service life ratio 7 . Given this contour, one can now design against a 

worst-case scenario. In this case, we search along the contour for the largest possible 

7  (minimum fatigue life) for a desired b value. Usually the physics of the problem 

gives a good insight into where this design point might be on the contour, in which 

case the search can be localized to a smaller region.

For the example problem in this study, Fig. 5.5 shows the resulting material 

contour for SCF and C for a Pf — 1.27xl0“3 (/3 =  3.02). Recall this was the
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reliability achieved in the forward FORM problem and so will also serve as a check 

of the inverse FORM problem. When we search this contour with a  selected 6  =  6  

(see Fig. 5.6), we find that design point turns out to be exactly at e*c  =  0.41 and 

£s c f  =  1-267 and 7  =  10 (reported as 7  in the figure). Recall that these are exactly 

the same as the forward FORM values, confirming the inverse FORM formulation. 

Fig. 5.6 also shows how the design point will vary when selecting different material 

exponents 6 . For example, if 6  is chosen to be 3, then the design requires a smaller 

ec  ~  0.3 and smaller £scf ~  1-17 (i.e., more conservative C and less conservative 

SCF) to achieve the same =  3.02. Recall that a smaller 6  value implies that 

the fatigue life is less sensitive to the load (SCF) versus the S-N curve variability. 

Note also that for 6  =  3 the element can survive for a longer duration (smaller 7 ) 

compared to 6  =  6 . On the other hand, for 6  =  9 we find larger ec  and £s c f  (i-e. less 

conservative C and more conservative SCF) are needed compared to 6  =  6  in order 

to achieve (3 =  3.02. The fatigue life now reduces to about l/20 th  of the median life 

when increasing 6  to 9.

5.5 Conclusions

In this short study on fatigue reliability applied to ship structures, we demonstrate 

a method to find the probability of failure or the reliability of a structural element 

by considering uncertainties at various levels: the environment, load given the envi

ronment, and the material strength of the element. Given estimates of the associated 

random variables, first- and second-order reliability methods can be used to efficiently 

predict the reliability of the system and to locate the design point.

Conversely, inverse FORM techniques can be used to find the design values of the
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U2

Transform

Design
Point

Figure 5.4: Transformation of standard normal variables (Ui and U2) to physical 
variables ec and £scf to find material contour

random variables so that a pre-selected reliability level may be achieved in the design. 

This was successfully demonstrated for the two variable (SCF and C) example, and 

can, in general, be extended to more number of variables.

The above fatigue reliability analyses can be extended to include the NTF scheme 

to predict fatigue damage using the long-term distribution of the wave height H  and
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Figure 5.5: Material contour: Locus of points of ec and escF for which FORM method 
gives a reliability /? =  3.02

periods T. Such a scheme can be easily implemented in the FORM analysis.

Alternatively, we could assume the ship load (mid-ship bending moment) to be the 

result of a second-order nonlinear system, and given the wave input seek to identify the 

first- and second-order transfer functions that define the system. Once these transfer 

functions are estimated, we can readily find the moment-influence coefficients (see 

Chapter 2: Eqn. 2.6 and 2.7) for the given seastate parameters (Hs, Tp). Using 

these moments, we can calibrate a distribution of the stresses and then find the 

resulting fatigue damage in this seastate. The long-term damage can be found by
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Figure 5.6: Design choices of ec  and £scf for different S-N exponents b that result in 
desired reliability /? =  3.02

summing such damage estimates across a  set of selected seastate parameters [57,61]. 

These parameters may be selected, for example, at the quadrature points of the joint 

distribution of the parameters to efficiently calculate the long-term damage.
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Chapter 6

Summary and Recommendations

In this chapter, we summarize the important conclusions in this dissertation and 

propose directions for future work.

6 .1  Nonlinear Random Ocean Waves

Summary

We applied second-order random wave models to investigate the nonlinearities in 

measured waves (for both wave tank data and ocean field measurements). We found 

that the second-order model predictions compared well with wave tank results and the 

agreement was even better in the case of field measurements. We proposed convenient 

analytic formulations for skewness and kurtosis of waves as a function of the param

eters (H„ TP, d) characterizing the climate conditions and the water depth at the 

site of interest. We also proposed simple analytic crest height distributions based on 

these predicted moments and found these predicted distributions to compare closely
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with the measured results. We developed a computer program to simulate second- 

order nonlinear waves. Given a measured time history, this program can also identify 

the underlying 6 rst-order wave component which when run through the second-order 

predictor produces a resultant time history that agrees with the measured history at 

every time point.

Future Work

In order to test the limitations of this model, we suggest comparison of predictions 

from this second-order model across more severe climate conditions. We found that 

while the field results were well-predicted, the wave tank crest heights seemed to 

be underpredicted by the second-order wave model. A more detailed investigation 

of the wave tank data may help explain these results. Recall that the wave tank 

data comprised of 2  hour measurements and a hypothesis is that these measurements 

are long enough to be nonstationary. A way to confirm this hypothesis may be to 

investigate shorter segments of the 2  hour histories and compare model predictions to 

measured statistics from these smaller segments. As pointed earlier, scaling down of 

the waves in the tank may also be a source of error, particularly so when generating 

waves in severe storms.

For the wave tank data, we found that the prediction of the marginal PDF of 

the wave elevations was in closer agreement with the measured results than the wave 

crest predictions. This may suggest that the discrepancy in the wave elevation does 

not explain the larger discrepancy in the wave crests. A discrepancy, if any, in the 

comparisons of the upcrossing rates or the velocities of the second-order simulated 

histories to the measured results may help explain the larger discrepancy in the crest 

heights.
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We found that the cubic Hermite model (using observed moments) slightly un- 

derpredicts the crest heights in the two to three cr„ range even though it quite accu

rately predicts the elevations for the wave tank data. Note that the Rayleigh crests 

are transformed in this Hermite prediction and consequently assumes an underly

ing narrow-band process. We could, instead, simulate corresponding Gaussian waves 

from the measured spectrum in an attempt to reflect the measured bandwidth; and 

transform the Gaussian elevations at every time point using the cubic Hermite model 

with moments of the measured history. A comparison of the crest distribution of 

this transformed history with the observed crest results will indicate the impact of 

bandwidth effects on the crest height distribution. Note here that we are attempting 

to preserve both the observed moments and the observed bandwidths.

Finally, estimation of extreme crest heights for a desired return period (for airgap 

design) could be based on inverse FORM ideas.

6.2 Spar Floating Platform

Sum m ary

We applied second-order nonlinear wave loads on a rigid-body model of the spar to 

predict global horizontal displacements of the spar floating platform. We compared 

these to measured displacements in wave tank tests due to random waves reflecting 

100-year storms in Gulf of Mexico and North Sea sites. The potential difficulties in 

predicting the responses included: (1 ) the apparent transient response seen in the 

hourly measurements, and (2 ) the few measured cycles of the slow-drift displacement 

components. We surveyed four prediction models: (1 ) nonlinear diffraction forces 

only, (2) diffraction forces plus wave drift damping effect, (3) model 2 plus additional
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viscous forces due to undisturbed waves, and (4) model 2 plus viscous forces from 

disturbed waves. The diffraction force model seemed to underpredict the observed 

mean ofiset, so that the inclusion of viscous effects led to an improved prediction of 

the mean offset. The four models generally give good agreement with observed results 

and even seem to predict the apparent mode-swapping. Model 4 appears to better 

predict the occurrence of these mode-swapping times as well.

Future Work

The first proposal is to perform additional investigations in an effort to further im

prove the agreement between the predicted and measured results. We could, for 

example, investigate half-hour measurements instead of the hourly measurement in 

an attempt to identify effects of nonstationarity on predicted response. Another in

teresting study would be to quantify the mode-swapping effects seen in the measured 

histories using a moving window. We could study a ratio of the rms surge to pitch 

response across these windows and develop a strategy for identify the occurrence of 

mode-swapping ranges in the time history. We could similar scheme to the predicted 

history as well and the compare it to measured results.

In the model formulations, we suggest investigating other schemes to calibrate 

the damping ratios in the four prediction models. For example, we could tune the 

damping estimates to match the rms of the measured response, instead of the spec

tral bandwidth as used in this study. The model accuracy can then be gauged by 

comparing the predicted and measured spectral bandwidths. The methods studied in 

this dissertation can be extended to other responses, for example, the heave response 

of the spar in random waves to design the airgap of the spar.

Given successful comparison of predicted results to measurement, the model can
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be applied, for example, to perform a  fatigue or ultimate strength analysis of the 

spar. We could use these to develop load and resistance design factors for the limit 

states considered.

6.3 Nonlinear Ship Loads

Summary

In this study, we compared fatigue damages from a linear to a nonlinear analysis 

of a monohull ship with flared cross-sections at the ends. Although a linear analy

sis permits a quick estimate of mean fatigue damage, we find that it underpredicts 

the corresponding damage from a nonlinear analysis. This was shown for the most 

damaging seastate according to a linear analysis. The nonlinear analysis used here is 

based on a 2 -D strip theory where we integrate water pressures to the instantaneous 

wetted surface on the ship. The fatigue damage is due to the tensile stresses caused 

by the gross mid-ship bending moments. We applied an NTF (“Nonlinear Transfer 

Function”) model to efficiently predict fatigue damage. This damage is much closer 

to the damage estimate from a nonlinear analysis than is the damage from a linear 

analysis. In the example seastate demonstrated in the thesis, the 20 hours of simu

lated stresses from the nonlinear analysis about 6  days of computer time on a HP 900 

workstation, while the NTF model took on the order of minutes to predict fatigue 

damage. We further improved these NTF predicted damage by introducing empir

ical corrections. For sag-induced damage, these corrections were to account for the 

random nature of stress due to a wave with a given a wave height and wave period. 

For hog-induced damage, we additionally included a bias correction. It is suggested 

that as part of the NTF model, these empirical corrections be obtained from limited
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random wave runs of the nonlinear analysis.

Future Work

The NTF predictions were compared to the nonlinear analysis results in a single 

seastate. We suggest additional comparisons be performed in other seastates as well; 

and finally compare the long-term predicted damage from the NTF model to sim

ulated long-term damage from the nonlinear analysis. The nonlinear analysis could 

be performed across a set of climate conditions (Ht , Tp) with probabilities chosen to 

reflect the long-term distribution of these parameters. The simulated damage in each 

of these seastates could be weighted and summed to result in a long-term damage 

from the nonlinear analysis. The NTF model, on the other hand, may be used to 

predict fatigue from a selected set of wave heights and wave periods whose occurrence 

probabilities reflect the long-term distribution of the wave parameters. The nonlinear 

stresses from these selected waves can then be used to predict the long-term NTF 

fatigue damage. An agreement in these two long-term damage estimate will further 

test the NTF model capabilities. We could similarly predict and compare long-term 

fatigue damage from a linear analysis as well to demonstrate performance of linear 

analysis in predicting long-term fatigue damage.

As part of the future work, we also recommend that the NTF model studies be 

generalized to other seastates, other loads on the ship, other ship models, and to other 

ship analysis programs. Finally, impact of nonlinearities in the waves on fatigue in 

ship can be investigated by analyzing the ship in waves simulated from the second- 

order wave model, instead of using linear (Gaussian) waves.
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6.4 Ship Fatigue Reliability

Summary

In this study, we demonstrated a  fatigue reliability analysis of a ship structure by inte

grating uncertainties at three levels: (1 ) the environment, (2 ) the structural response 

given the environment, and (3) the resistance properties of the structural element. 

We estimated the failure probability Pf (probability of fatigue life being less than a 

specified service life) from the associated random variables using a FORM (“First- 

Order Reliability Method”) analysis. We showed an inverse FORM analysis scheme 

to select the design parameters (stress concentration factor SCF and S-N factor C) 

given a target failure probability.

Future Work

In modeling the response (S ) given the environment (H)  denoted as “S\Hn, we chose 

the form E[S\H] = aHp, in which a and p  were found from regression analysis using 

one hour of stress simulation in a specific seastate. This was the most damaging 

seastate according to a  linear analysis. We suggest investigating the impact on Pf  

when using simulations in other seastates to estimate a and p.

Another suggestion is to extend the fatigue reliability analysis to include the NTF 

scheme to predict fatigue damage using the long-term distribution of the wave height 

H  and periods T. Such a scheme can be easily implemented in the FORM analysis.

Alternatively, we could assume the ship load (mid-ship bending moment) to be the 

result of a second-order nonlinear system, and given the wave input seek to identify the 

first- and second-order transfer functions that define the system. Once these transfer 

functions are estimated, we can readily find the moment-influence coefficients (see
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Chapter 2: Eqn. 2.6 and 2.7) for the given seastate parameters (H„ Tp). Using 

these moments, we can calibrate a distribution of the stresses and then find the 

resulting fatigue damage in this seastate. The long-term damage can be found by 

summing such damage estimates across a set of selected seastate parameters [57,61]. 

These parameters may be selected, for example, at the quadrature points of the joint 

distribution of the parameters to efficiently calculate the long-term damage.
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Appendix A

Appendix: M ethodology of 

First-order Wave Identification

The idea here is to identify the implied first-order history T)i(t) (of an observed history 

T j0 b * ( t ) )  which, when run through the second-order predictor, yields an incident wave 

that agrees with Tfot*(<)- The reader is referred to [23] for details on the algorithm.

In the first-order wave process r/i(t), see Eqn. 2.2, written as a Fourier sum of N 

frequencies,
N / 2  N

Vi(t) =  E A* cos(u>kt +  #k) =  Z  X ke ^  (A.l)
k=l k= 1

we need to identify only the lower half Xk components, since the upper half values 

are complex conjugates of the lower half. Let us denote Xk = Uk + z'Vjt, where £/*, V* 

are the real and imaginary parts of the complex Fourier component Xk, respectively.

The predicted second-order wave process (see Eqn. 2.4) as evaluated from the 

QTFs is

N / 2  N / 2

A.fc(() = 2 R e £ £  (A.2)
m=l n=l
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This may be rewritten in the form of a Fourier sum as

AtT2(t) = '£ Y ker>t (A.3)
fc=i

where Yk = Yk +  Yk are the combined sum and difference frequency components. 

Here again, Yk possesses conjugate symmetry so that only the lower half contains 

unique information. Yk can be shown to be

n+ = £  xmxuH+„
m+njc

=  £  W u U .-V J V .)  + i t y M  + U„V.)]B+. (A.4)
m+njc

where the summation symbol indicates a double summation

N / 2  N / 2

22 =  j ]  £  such that + wn = uk (A.5)
m+n,k m=l n=l

and

nr = £  xmx-H-n
m—n,k

=  £  WPmo .  + vmv .) + i ( v ma . - u mv .) ] B z .  (a . 6 )
to—n,Jfc

where
N / 2  N / 2

22 =  51 £  such that ~  w» i =  ^  (A*7)
m—n,k m=l n=l

The combined predicted wave process is

VedW =  m(t) +  &m(t) (A.8 )
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The identification scheme strives to simultaneously match i?pred(£) to the observed 

wave history at every value of t. Alternatively, we can perform the identi

fication in the frequency domain and strive to simultaneously match the predicted 

Fourier components to the observed Fourier components at all frequencies. 

ftobe(t) can be represented in the frequency domain as

W < )  =  £ > < : ” *' (A.9)

where Z*’s also possess conjugate symmetry. If the first-order components are iden

tified exactly, from Eqn.s A.l, A.3 and A.9 we will have

Zk = X k + Y k ; for all A: =  1 . . .  N /2  (A.10)

Note that the upper half values can be obtained from conjugate symmetry of the

lower half values. In the Newton-Raphson identification scheme we will try to simul

taneously minimize X k +Yk — Z k\ for k =  1 . . .  N/2  to achieve convergence. Now, this 

scheme requires a Jacobian of X k + Yk — Zk with respect to the unknowns X*-such a 

complex differentiation will lead to numerical discontinuities so we will minimize an 

equivalent real function f l / N  instead, where for k =  1 . . .  N/2

fk  =  Re(Xk + Yk - Z k) 

f k + N / 2  =  Im(X/t + Yk — Zk) (A.11)

The identification of the lower half X k values requires a simultaneous solution of

the nonlinear equations in A .ll  such that f k —► 0 for all k =  1  N,  or alternately
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y/$2i f k / N  0. We will formulate the Newton-Raphson scheme in vector form as

PoY r RoV r Rat:
(A.12)f  =

' ReX ' ' ReY ‘ ' ReZ '
ImX "T !mY ImZ

where bold face letters denote vectors, and vectors X ,Y , Z contain the complex 

Fourier components Xk, Yk, Zk, k = I . . .  N/2 , respectively. Here, ] is a vector 

containing the real part of X  in the upper half and the imaginary part of X  in the 

lower half.

Let us denote

A  =  

B =

C =

ReX
ImX
ReY

JCJ_
V

ImY
ReZ

(A-13)

ImZ

Note that the vector A, of length N,  is constructed such that lower half values 

are the real parts of Xk', k =  1 . . .  N/2  and the upper half is the imaginary part 

of Xk; k  =  1 . . .  N/2.  Similarly, B and C, each of length N,  contain real and 

imaginary parts of the lower half of the second-order correction and the observed 

Fourier components, respectively. The elements of A and B  are denoted by a/ and 

bk, respectively, where l ,k = I . . . N.  The objective function in vector notation now 

is

f(A) =  A +  B  -  C (A.14)

A 6 rst-order Taylor approximation of f(A) about a given A*0) is

f  (A) =  f  (A<01) +  [J] (A -  A (0)) (A.15)
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where [7] is a N x N  Jacobian matrix denoting the derivatives of the elements f k in

vector f  (A) with respect to each of the unknowns at in A  where k , l  = I .. .N.  The

Newton-Raphson scheme at iteration p + 1  is then formulated as

A(p+l) * A w  +  h  (A.16)

where h, a vector of length N,  is found from a Cholesky decomposition followed by 

a back-substitution scheme from

[J]h =  - f  (A w ) (A.17)

It can be easily shown from Eqn. A. 14 that the entries Jkjt of the matrix [J] are

*■ + ( A 1 8 )  

where dbk/dat indicates the partial derivative of bk with respect to a;, and

1  i ( k  = l
Ski =  < (A.19) 

0  otherwise

To find dbk/dai, recall from notation in A.13

bk = ReYk and bk+N/2 =  ImYk for k =  1 . . .  N /2

at = Im Xt =  Ui and al+N/2 =  Im X( = Vj for 1 = 1 . . .  N/2
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so that from Eqn.s A.4 and A . 6  we have 

dReYk
dUi 

dRe n
dVi 

dim Yk 
dUt 

dlmYk 
dVi

Schematically,

= Y (UJml + UMHim+ Y. (U^ + UMH-n
m+n̂ fc m—nje

= Y -  W -x + + E  +
m+n, it m—n£

= Y  (KAl + VJrt) + Y
m+njc m—njc

= £  (U Jm l+U M H ^-h  £  (UnSml-Um6nl)HZn
m+njt m—nje

[ dReYk dReYk ‘

[ J ] = [ / ]  + dU,
"3HhTT

dV,
dlm rfc

1 dVx

where [/] is the identity matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(A.20)

(A.2 1 )



www.manaraa.com

Appendix B

FITQTF: QTF Surface Spline 

Interpolation—A Pre-processor to  

TFPOP

B .l Introduction

A need to have better interpolation schemes for QTFs in second-order analysis using 

TFPOP [58] motivated the development of this tool. The analysis required to obtain 

QTF values is usually an expensive process, as a result the values are estimated only 

for a sparse number of frequency pairs. TFPOP provides options for a few interpola

tion schemes (see [58]), that are based on weighted linear interpolation of QTF values 

within a specified radius. This tool supplements the available interpolation schemes 

in TFPOP and provides for a  flexible means of interpolating a sparse QTF data set 

into a fine mesh for direct input to TFPOP. The salient features of this tool are:

195
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• The input QTF data is in WAMIT [64] format, this is also the format in which 

TFPOP reads in the QTFs. The output interpolated QTF is also in a format 

that TFPOP can read directly.

• The input QTF can be a sparse data set on a  regular or irregular grid of fre

quency (period) pairs. The data set need not be any order. Due to symmetry 

conditions, the input QTF should only be provided on either the upper or the 

lower triangle about the principal diagonal (cj, =  Uj) of the frequency axis.

• The interpolation is based on a flexible scheme of surface-fitting. FITQTF 

allows for surface-spline fits of various orders in both frequency directions.

•  The interpolation can be based on the axes being any one of frequency (Hz), 

wave period (seconds), wavelength (meters), or wave number (per meter).

B.2 Interpolation Options

The input QTF is interpolated by fitting spline surfaces of different orders, kx and 

ky (specified by the user), in the two directions x and y. FITQTF can fit splines of 

orders ranging from 1 through 5 in each direction . Different orders of splines can 

be chosen in the two directions. The data can also be rotated by 45 degrees in the 

frequency plane and then interpolated. This rotated interpolation offers a benefit 

of fitting along the principal diagonal, for example, without using any information 

from the off-diagonal terms. The user can also specify the x and y coordinate axes 

used in interpolation to be one of: frequency (Hz), wave period (seconds), wavelength 

(meters), or wave number (per meter).
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Table B.l: Description of error messages from FITQTF

D escrip tion
ier Unless the routine detects an error, ier contains a 

non-positive value on exit
ier= 0 Normal return, the spline returned has a residual 

sum of squares fp such that abs(fp-s)/s <  tol with 
tol a relative tolerance set to 0 . 0 0 1  by the program

ier=-l Normal return, the spline returned is an interpo
lating spline (fp=0 )

ier= - 2 Normal return, the spline returned is the weighted 
least- squares polynomial of degrees kx and ky. in 
this extreme case fp gives the upper bound for the 
smoothing factor s

FITQTF requires as input a  parameter s that governs the level of smoothing 

desired in fitting the surface data. A very large value of s will result in a least- 

squares fit to the surface, while, in theory, a value s = 0  will result in an interpolating 

spline. However, such an interpolating spline may not always be possible owing to 

possible theoretical (refer to the subroutine comments regarding more details on s 

and corresponding error messages). Public domain subroutines (su rf  i t  and bispev) 

are used to fit a surface to the QTF data and the resulting spline coefficients are used 

for interpolation. For a specified s value, the program tries to fit a  surface and then 

estimates the sum of the residuals squared, and prints these out on standard error. 

Error flags are also printed to convey the success in fitting the data. The details of the 

interpretation of the error messages are in the comments of the subroutine surf i t ,  

and Table B .l presents a list of “acceptable” error message values ie r :
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Figure B.l: FYequency grid points of the sparse and the finely meshed QTF values 
from SWIM

B.3 Verification Studies of FITQTF Interpolation

Some verification studies were done on the accuracy of interpolation from FITQTF 

for surge response analysis of the OTRC spar. For the spar modeled as a 1 -DOF 

model in the surge direction, a diffraction analysis was performed on a fine mesh 

of difference frequency QTFs to generate the mean and standard deviation of the 

surge response. We also perform the same diffraction analysis, but now using various 

interpolated QTF schemes starting from a sparse QTF data set. The sparse QTF 

data set contains about 10 times fewer values than the fine mesh QTF as shown in 

Fig. B.l. Both the QTF data sets were generated using SWIM [53].

The diffraction analysis involved finding the mean, /x, and standard deviation, 

o, of the surge response from direct statistics, and from an hourly prediction of the
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response in a seastate characterized by H, =  14.1m, Tp = 13.8s, 7  =  2.2. Three 

models of the spar were analyzed, assuming the natural periods to be 330 sec, 100 

sec, and 71 sec. Each of the three models were analyzed assuming two damping 

values of 2.4% and 5% in the surge direction. Thus, we have a total of six cases that 

were analyzed for /x and a. “Exact” moments for these models were generated from 

the 100x100 finely meshed QTF. The moments were also generated using various 

interpolated QTFs starting from the 8 x8  QTF and compared to the exact moments.

The different interpolation schemes adopted in this comparison study are:

•  realim ag: Using the TFPOP built-in interpolation on real and imaginary QTF 

values within a specified radius of 0.032 Hz.

•  11,0: Using FITQTF to interpolate to a fine mesh by fitting linear splines in 

both directions without any rotation of the axes

•  11,45: Using FITQTF to interpolate to a fine mesh by fitting linear splines in 

both directions after rotating the axes by 45 degrees

•  33,0: Using FITQTF to interpolate to a fine mesh by fitting cubic splines in 

both directions without any rotation of the axes

•  33,45: Using FITQTF to interpolate to a fine mesh by fitting cubic splines in 

both directions after rotating axes by 45 degrees

Figures B . 2  and B.3 show n and a  from direct statistics for the various interpolated 

QTFs versus the exact moments from the 100x100 QTF. Each vertical strip on these 

plots corresponds to a natural frequency, and along each vertical strip there are two 

sets of points corresponding to the two damping ratios used for each natural frequency. 

All the structures are analyzed assuming the same QTF, and are analyzed in the same
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seastate so the mean surge does not depend on the natural period, as a result the 

mean ratio for an interpolation model does not change with natural period. Also, the 

damping ratio does not affect the mean, so we two sets of mean for the two damping 

ratios lie on top of each other for a given natural frequency. It is seen from this plot 

that FITQTF substantially reduces the error in estimating the mean. The realim ag 

interpolation yields about 8 % smaller mean than the exact answer, and the FITQTF 

interpolations closer predictions.

Similarly, we see in Fig. B.3 that a bi-linear interpolation without any rotation 

is in error by a  maximum of 2 0 %, while the rest of the interpolation schemes give a 

significantly better fit to the exact answer across the three natural periods, and across 

the two damping ratios. The closest fit among the interpolation schemes shown, seems 

to be provided by the bi-cubic interpolation in both n and a.

Another set of comparison of the interpolated QTF moments to the exact moments 

are shown in Fig.s B.4 and B.5 for 1 -hour prediction in the same seastate. Here again, 

we find similar observations as in the direct statistics comparison. The closest fit to 

the exact answer seems to be offered by the bi-cubic splines.

In conclusion, we find that FITQTF seems to offer a flexible, convenient and 

reliable means of interpolating the QTFs.
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Figure B.2: Direct statistics mean for interpolated QTFs from sparse QTF vs. exact 
mean from finely meshed QTF (from diffraction analysis)
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Figure B.3: Direct statistics standard deviation for interpolated QTFs from sparse 
QTF vs. exact mean from finely meshed QTF
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Figure 6.4: 1 -hour predicted mean for interpolated QTFs from sparse QTF vs. exact 
mean from finely meshed QTF
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Figure B.5: 1 -hour predicted standard deviation for interpolated QTFs from sparse 
QTF vs. exact mean from finely meshed QTF
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